Effekte

Essentials

Nachhall (Hall, engl. Reverb) und Echo sind zwei Effekte, die auch in geschlossenen Räumen, in Straßen, auf Plätzen und in der Naturvorkommen.

Hall als Standard-Effekt soll Instrumenten und Gesang etwas vom Ambiente eines Raumes oder einer anderen Location vermitteln.

Echos werden manchmal in Kombination mit Hall eingesetzt. Sie haben in jedem Fall auch eine rhythmische Wirkung.

Effekte wie Gated Reverb, Flanger, Chorus, Pitch Change, FilterEffekte, Distortion etc. kommen in der Umwelt nicht vor. Man kann sie nur elektronisch erzeugen.

Gated Reverb wird standardmäßig in Verbindung mit Drum- und perkussiven Sounds angewendet.

Flanger und Chorus sind so genannte Modulations-Effekte. Sie verbreitern einen Sound. Außerdem werden sie zur Vervielfachung von Stimmen eingesetzt bzw. für so genannte "Ensemble-Wirkungen".

Ähnliche Resultate bekommt man auch mit Pitch Change .(Pitch Transpose) = Tonhöhen-Veränderung. Durch Pitch Transpose erhält man außerdem musikalische Intervalle. In Verbindung mit Delay entstehen auch Science Fiction- und Fantasy-Effekte.

Alle "realistischen" und "künstlichen" Effekt-Arten stehen in einem Multieffekt-Prozessor in kompakter Form zur Verfügung.

Multieffekt-Prozessoren sind komplex und in der Fülle ihrer kaum zu überblicken. Um sie effektiv zu nutzen, beschränkt man sich am besten auf wenige Programme, die man durch Veränderung der wichtigsten Parameter der jeweiligen Situation anpasst. Die meisten Prozessoren sind wie ein Baukasten organisiert. Man kann mehrere Effekte hintereinander oder parallel schalten.

Durch Effekte kann man sich spielerisch oder auch kompositorisch "inspirieren" lassen. In diesem Fall ist es zweckmäßig, den Effekt als festen Bestandteil eines Sounds auch gleich mit aufzunehmen. Dies ist besonders dann empfehlenswert, wenn man nur über ein einziges Effektgerät verfügt.

Wozu Effekte?

Womöglich ist es nicht gerade Ihr bevorzugtes Metier. Aber nehmen wir einmal an, Sie sind gerade dabei, in der St. Baptist Church zu New York den traditionsreichen, lokalen Gospel-Chor aufzunehmen. Die Kirche liegt im Zentrum eines Schwarzen-Viertels, und die Damen und Herren haben an diesem Ort seit vielen Jahren ihre Proben und Auftritte. Sie sind an den

Raum, sein Ambiente und seine Akustik so gewöhnt, dass Musik und "Location" optimal zusammenwirken. Man könnte auch sagen: sie bilden eine Einheit.

Benutzen Sie nun Ihre akustische Fantasie und stellen Sie es ich vor, wie der Gospel-Chor statt dessen in einem Büroraum von 20 Quadratmeter klingen könnte. Oder in einer Maxi-Kathedrale wie dem Kölner Dom.

Das Büro ist sicher für diesen Sound zu klein, zu eng, einfach zu "muffig". So ein Raum ist nicht in der Lage, die Musik zu "tragen", sie kann sich dort nicht "entfalten". Der Dom andererseits ist gleich ein paar Nummern zu groß: Gospeln mit schnellem Tempo "verschwimmt" dort in einer Hall-Soße, so dass man melodische Linien nicht mehr klar nachvollziehen kann. Die Songs verlieren ihre Direktheit und sind für den Hörer nicht mehr "greifbar".

Saxofon-Spieler und Vokalisten, die man zum Teil der Musiker-Fraktion des New Age zurechnen muss, haben immer wieder die Einheit von musikalischer Aussage und "Raumsound-Performance" gesucht, indem sie Aufnahmen in klanglich (und teils auch architektonisch) exponierten Locations gemacht haben. Dazu zählen Pyramiden oder der Tempel des Taj Mahal, aber auch Naturschauplätze wie Canyons oder Höhlen. In einigen Ländern Südafrikas existiert folkloristisches Repertoire, das zur Aufführung an bestimmten Naturschauplätzen bestimmt ist, in der Regel Felsenkessel, von deren Wänden der Schallauf besondere Weise reflektiert wird. Auch die klassische Musik der vergangenen Jahrhunderte kommt nur unter bestimmten räumlichen Gegebenheiten optimal zur Geltung. Die klassischen Meister haben immer wieder Werke komponiert, die von vornherein für die Aufführung in einem bestimmten Konzertsaal oder einer bestimmten Kirche bestimmt waren.

"Natürliche" Effekte

Das Spielen mit einem "natürlichen Effekt" können Sie in der freien Natur ausprobieren. Gehen Sie auf ein freies Feld, 50 bis 150 Meter von einem Waldrand entfernt. Rappen Sie, starten Sie einen Handclap-Groove - oder beides. Wie man in den Wald hinein-groovt, so schallt es bekanntlich heraus. Mit anderen Worten: Das Tempo Ihres Grooves werden Sie ganz automatisch nach der Zeit richten, die der Wald braucht, um Ihnen ein Echo zurück zu senden. Wenn Sie sich bei dieser Art von Performance als fortgeschritten empfinden, suchen Sie sich eine Stelle, an der zwei Waldstücke rechtwinklig zusammenstoßen. Je nachdem, wo Sie sich positionieren, haben Sie dann zwei unterschiedliche Echos. Sie können es so einrichten, dass Sie von vorn Echos im Abstand von Viertelnoten bekommen und von links Achtel oder Triolen.

Wenn Sie in der Stadt leben, können Sie diese Echo-Experience mit Häuserwänden oder Mauern durchführen.

Ein Effekt inspiriert; er gibt außerdem Ihrer Komposition gleich eine bestimmte Form. Dies ist ein Grund für das Spielen mit einem Effekt, im Unterschied zum nachträglichen Hinzufügen - wir kommen später noch darauf zurück.

Hall und Echo sind zwei "Basis-Effekte", die uns auch ständig in geschlossenen Räumen und in der Natur begegnen. Auch jeder Sound, der irgendwo auf der Straße passiert, hat einen "Effekt". Denn überall wo Materialien sind, die den Schall reflektieren, entstehen Echos. Wenn sich Echos in einer bestimmten Weise verdichten und überlagern, entsteht Hall. Mit Ausnahme des so genannten "schalltoten Raumes": Unsere Umwelt ist voller Effekte.

Was Sie in einem Studio von bescheidenen räumlichen Ausmaßen aufnehmen, klingt relativ trocken. Wenn Sie - wie es weithin üblich ist - das Mikrofon sehr nahe am Sänger oder am Instrument aufstellen, spielt der Sound des Aufnahmeraumes nur eine geringe Rolle.

Vielleicht wünschen Sie sich für Ihre Aufnahme einen Hall wie in der New Yorker St. Baptist Church, im Kölner Dom oder in der Philharmonie in München. Ein Hall dieser Art kann dazu beitragen, einem bestimmten Song oder einem Solo Tiefe, Weite, eine "Bedeutung" und einen "romantischen Touch" zu geben. Vielleicht möchten Sie den Gesang oder das Gitarrensolo auch in eine Garage versetzen, in ein Treppenhaus, ein Badezimmer, eine Gruft oder in eine Straßenschlucht. Die Frage ist: Was passt gerade zu Ihrer Musik? Was trifft den Punkt, und zwar so, dass die stilistische Besonderheit eines Stücks hervorgehoben wird?

Nachall (Reverb) sorgt dafür, dass Instrumente und Gesang nachträglich in eine besondere räumliche Umgebung versetzt werden. Mit dem nachträglich "hinzugefügten" Raum sollen Instrumente und Gesang "eindrucksvoll", "schwebend" oder "leicht" klingen. Dieser "Hall-Raum" bringt eine neue akustische Dimension in das Klangbild und rundet es ab.

Echos sind immer eine rhythmische Unterstützung. Kurze Echos wie Achtel, Sechzehntel, Triolen oder Quintolen wirken mit anderen Rhythmus-Elementen zusammen. Sie bereichern einen Groove und stabilisieren ihn. Längere Echos wie Viertel- und halbe Noten erzeugen einen Eindruck von "Weite" und "Tiefe".

Sampling Reverb - "Faltungshall"

Überein hochwertiges, so weit wie möglich neutrales Lautsprecher-System - als quasi "punktförmige" Schallquelle - werden zeitlich versetzte Impulse in einen Raum abgestrahlt. Die "Antwort" des Raumes wird mit Mikrofonen aufgenommen, die an geeigneten Stellen im Raum platziert sind. Die Impuls-Antworten des Raumes werden gesampelt; aus den gewonnenen Daten wird ein Algorithmus generiert. Nachhall-Prozessoren auf der Basis von Sampling Reverb bieten dem Anwender die Algorithmen von bekannten Konzertsälen, Kirchen, Studio-Räumen, Stadien, Arenen, Open Air Locations (z. B. Grand Canyon) und Hallplatten. Geräte mit Sampling Reverb gibt es von Sony und Yamaha.

"Unnatürliche", "künstliche" Effekte

Für Hall und Echofinden wir reichlich Vorbilder in der Natur. Abgesehen von solchen "Standards" ist die Popmusik randvoll mit Effekten, für die es in der "Analogen Realität" keine Entsprechungen gibt. Diese Sounds werden überhaupt nur durch Elektronik möglich; erst die Mikroprozessor-Technik hat die Voraussetzungen dafür geschaffen, dass heute praktisch jeder auf die gesamte Palette von Spezial-Effekten zugreifen kann.

Gated Reverbs und Rückwärts-Hall, "virtuelle Räume", Sounds auf der Basis von Chorus, Phaser, Flanger, Harmonizer und Wahwah, Filter-, Resonator-, Ringmodulator- und Vocoder-Effekte sind zum festen Bestandteil unserer Hörgewohnheiten geworden. 6 Effektgeräte im gleichzeitigen Einsatz sind keine Seltenheit in einem Produktions-Studio der Mittelklasse. Oft wird jeder Sound, der in einem Arrangement von besonderer Bedeutung ist, durch einen SpezialEffekt unterstrichen bzw. "herausgearbeitet". Effekte haben einen wichtigen Beitrag dazu geleistet, dass sich die Popmusik seit den 80er Jahren überhaupt noch weiterentwickeln konnte.

Gated- und Rückwärts-Hall wird vor allem für Drums und Perkussion verwendet. Er klingt nicht allmählich aus wie zum Beispiel natürlicher Hall in einer Kirche, sondern endet mehr oder weniger abrupt. Dadurch ist er hervorragend geeignet, einen Groove zu unterstützen.

Phaser, Flanger und Chorus sind Delay-Effekte. Sie sorgen dafür, dass ein ursprünglich vielleicht eher blasser und "statischer" - Sound kontinuierlich verfärbt, moduliert, verbreitert oder auch "vervielfacht" wird. Durch Effekte dieser Kategorie kommt ein Sound "in Bewegung".

Ein einzelner Sound, zum Beispiel eine Gesangsstimme, wird alternativ durch einen Harmonizer oder Pitch Shifter verdoppelt oder vervielfacht. Darüber hinaus kann ein Pitch Shifter musikalische Intervalle wie Terz, Quinte, Oktave etc. erzeugen. Pitch- (Tonhöhen-) Effekte können skurril, "komisch" oder auch "kosmisch" klingen, besonders in Verbindung mit Hall oder Echo.

Der bekannteste Filter-Effekt ist der Wahwah. Besonders "scharf" eingestellte Filter erzeugen Vokal-artige Sounds wie A-0-U-I-E. Sie klingen "vertraut" und meist "sympathisch", weil sie Gemeinsamkeiten mit der menschlichen Sprach-Artikulation haben. Ähnlich wie die oben genannten Delay-Arten bringen Filter-Effekte "Bewegung" und "Farbigkeit" in einen Soundallerdings ohne ihn zu "verbreitern".

Verzerrungen (Distortion) kommen ursprünglich aus der Welt der E-Gitarre, werden aber hier und da auch für Keyboard-Sounds oder Drums/Percussion angewandt. Distortion-artige Effekte ("Crunch", "Overdrive" usw.) gehören in die Welt der "elektrifizierten" Klänge. Wer sie - deutlich hörbar - anwendet, erklärt damit seine Zugehörigkeit zu bestimmten musikalischen Stilrichtungen.

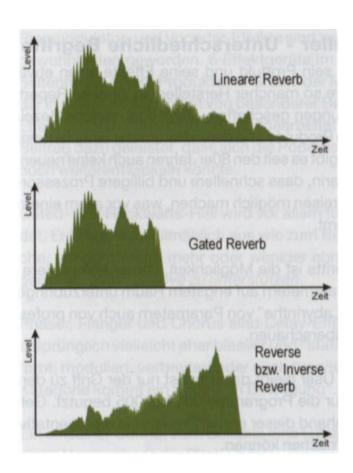
In diesem Script beschränken wir uns auf Standard-Effekte und ihre wichtigsten Parameter.

Unterschiedliche Hersteller - Unterschiedliche Begriffe Um den Eindruck hervorzurufen, sein Produkt und seine Effekte seien etwas ganz Besonderes, hat im Lauf der Jahre so mancher Hersteller ein eigenes Repertoire an Bezeichnungen und Namensgebungen geschaffen. Ganz egal, welche Bezeichnungen sich findige Entwickler für ihre Produkte und deren Parameter einfallen lassen: Sie kochen alle mit Wasser. Im Prinzip gibt es seit den 60er Jahren auch keine neuen Effekt Arten mehr. Der Fortschritt liegt darin, dass schnellere und billigere Prozessoren eine bessere Qualität zu günstigeren Preisen möglich machen, was vor allem einem natürlicher klingenden Hall zugute kommt.

Ein anderes Resultat des Fortschritts ist die Möglichkeit, immer komplexere Effekt Kombinationen mit immer mehr Parametern auf engstem Raum unterzubringen. Hier sind die Begriffs-Vielfalt und die "Labyrinthe" von Parametern auch von professionellen Anwendern oft nicht mehr zu überschauen.

Zumal für den durchschnittlichen User bleibt daher meist nur der Griff zu den Werk Presets. Oft werden überhaupt nur die Programme 001 bis 005 benutzt. Gehen Sie daher davon aus, dass Sie sich anhand dieser ersten Presets ein repräsentatives Bild von der Qualität des Effektgeräts machen können.

Reverb (Hall, Nachhall)


Natürlicher, so genannter "linearer" Hall in Effektgeräten orientiert sich an:

- realen Räumen und Locations: (Konzert-) Säle, Kirchen, Wohn- und Studioräume, Tunnels, Canyons, Arenen etc.
- mechanischen Vorbildern: Hallplatten (Plate), Hallfedern (Spring).

Hallplatten sind dünne Stahlplatten von z. B. 2x1 Meter Größe. Sie werden durch einen Kontakt-Lautsprecher zum Schwingen gebracht. Am anderen Ende sitzen Kontakt-Mikrofone, über die das Nachschwingen der Platte abgenommen wird. Durch einen Mechanismus aus Filz-Dämpfern kann man die Hallzeit der Platte verkürzen.

Hall-Federn wurden ursprünglich für Gitarrenverstärker entwickelt und funktionieren im Prinzip ähnlich wie eine Hallplatte.

Bei einem Gated Reverb wird das allmähliche Ausklingen durchein Noise Gate vorzeitig "gekappt". Einen Gated Reverb können Sie als Experiment selbst herstellen, indem Sie ein Noise Gate hinter einen "normalen" Hall platzieren. Die Phase des Ausklingens ist bei diesem Hall-Typ also künstlich. Das gleiche gilt für den Reverse Reverb (Rückwärts-Hall). Der Rückwärts-Hall baut sich im Unterschied zum Gated Reverb allmählich in Form einer Rampe auf

Natürlicher, "linearer" Reverb baut sich zu einer Art "Wolke" auf, bevor er allmählich abklingt. Bei Gated Reverb fehlt diese Phase des Ausklingens, er endet mehr oder weniger abrupt. Dieses "plötzliche Ende" setzt einen rhythmischen Akzent. Daher wird Gated Reverb oft für Drum- und Perkussion-Sounds verwendet, ebenso Rückwärts-Hall (Reverse).

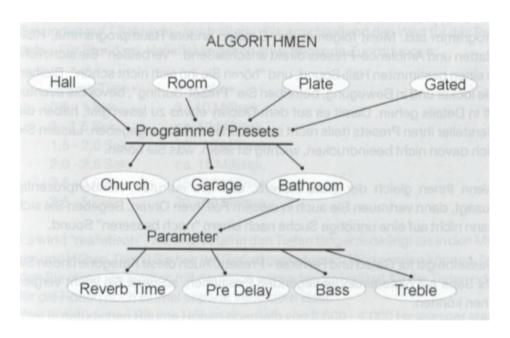
Reverb, der einen Raum, einen Saal, eine Kirche oder eine andere Location nachempfindet wird standardmäßig eingesetzt für • Gesang • Melodie- und Solo-Instrumente aller Art, zum Beispiel: Gitarren, Saxofone, solistische Keyboard-Melodien

Platten-Hall/(Plate Reverb) wird bevorzugt eingesetzt für

- Schlagzeug (vor allem Overheads und Becken), Perkussion Rhythmus-Gitarren
- Riffs und Fill-lns, z. B. von Bläsern

Platten-Hall hat zwar oft einen leicht metallischen "Beigeschmack", ist aber grundsätzlich von seinem Soundcharakter "schmaler", bzw. "weniger ausladend" als ein Raum-Hall. Er wirkt meist neutraler und unauffälliger; Sie können ihn daher bevorzugt als "funktionalen" Hall benutzen, der einem Sound das erforderliche Minimum an räumlicher "Verpackung" gibt, ohne selbst auffällig in Erscheinung zu treten.

Gated oder Reverse Reverb wird verwendet für


- Einzelne Schlagzeugteile (meist die Snare) oder Perkussion,
- Spezial-Effekte für Rhythmus- und Melodie-Instrumente aller Art.

Gated Reverb auf der Snare ist ein Standard-Effekt seit etwa 1985. Er gibt der Snare eine genau kontrollierbare, rhythmisch effektive "Breite". Je nachdem in welcher Stilistik Sie tätig sind, können Sie mit (länger ausklingenden) Gated oder Reverse-Programme auch experimentieren, um ungewöhnliche, "abenteuerliche" Räume für Vocals oder Soli ins Spiel zu bringen.

Reverb - Die wichtigsten Begriffe und Parameter

Als Algorithmus bezeichnet man das komplexe Muster von Rechenoperationen, mit denen der Prozessor in einem digitalen Effektgerät Hall oder einen anderen Effekt erzeugt. Ein Programm oder Preset entsteht aus einem Algorithmus durchein bestimmtes Setting der Parameter.

Parameter bestimmen einzelne Merkmale des Effekt-Sounds. Der wichtigste Hall-Parameter ist zum Beispiel die Raumgröße bzw. die Nachhall-Zeit.

Die "Hierarchie" von Algorithmen, Programmen und Parametern: Aus einem Algorithmus können beliebig viele Programme bzw. Presets entstehen. Presets werden mit plakativen Namen versehen, damit klar wird, welche Sound-Idee dahinter steckt. Auf der Ebene der Parameter kann man jedes Preset verändern und einer bestimmten Anwendungs-Situation genau anpassen.

Der praktische Umgang mit Presets und Parametern Jeder Hersteller setzt auf die erste Position seines Studio-Effektgeräts ein möglichst universell verwendbares Reverb-Programm. Diese Preset bezieht sich meist auf das Vorbild eines Konzertsaals ("Hall") und hat Nachhallzeiten zwischen 1,8 und 2,5 Sekunden. Diese Hallzeit passt in vielen Stücken für Gesang oder Soli, je nach Tempo des Stückes können Sie versuchsweise die Hallzeit ("Reverb Time") verkürzen oder verlängern. Extrem lange Hallzeiten (4 Sekunden und mehr) sind meist ein Spezial-Effekt. Normalerweise ist davon abzuraten, weil sich langer Hall wie ein Schleier oder eine Soße auf ein Arrangement legt und das Klangbild untransparent macht.

Wenn Sie mit diesem Standard-Preset Nr. 001 von vornherein nicht ganz zufrieden sind, probieren Sie - bevor Sie weitere Parameter verändern - ein anderes Programm aus. Meist folgen in den Geräten andere Raumprogramme, Hallplatten und Ambience-Presets direkt anschließend. "Verbeißen" Sie sich nicht in einen bestimmten Hall-Sound, und "hören Sie ihn sich nicht schön". Bleiben Sie locker und in Bewegung, betreiben Sie "Preset-Surfing", bevor Sie eventuell in Details gehen. Damit es auf dem Display etwas zu lesen gibt, haben die Hersteller ihren Presets (teils recht sensationelle) Namen gegeben. Lassen Sie sich davon nicht beeindrucken, wichtig ist allein, was Sie hören.

Wenn Ihnen gleich der erste Reverb, den Sie aufrufen, hundertprozentig zusagt, dann vertrauen Sie auch in diesem Fall Ihren Ohren. Begeben Sie sich dann nicht auf eine unnötige Suche nach einem "noch besseren" Sound.

Das selbe gilt für Gated und Reverse - Presets. Auch diese Kategorie finden Sie als Serie auf hintereinander liegenden Positionen, so dass Sie leicht vergleichen können.

Wenn Sie ein geeignetes Preset gefunden haben, gehen Sie daran, die richtige Dosierung des Effekts einzustellen. Sorgen Sie dafür, dass Reverb und direkter Sound im richtigen Verhältnis zueinander stehen. Achten Sie darauf, dass Ihr Sound konkret bleibt und nicht in einer "Waschküche" landet.

Während Sie die richtige Dosierung ermitteln, können Sie gleichzeitig mit der Länge des Halls, der Reverb Time experimentieren. Es gilt die Regel: Einen kürzeren, "straffen" Hall kann man höher dosieren als einen langen "Kathedralen-Hall". Dasgilt insbesondere in Verbindung mit Rhythmus-Tracks.

Reine "EarlyReflections" -Programme wirken ähnlich wie ein kurzer und "dichter" Hall. (Algorithmen dieser Art sind nicht bei allen Herstellern im Angebot.)

Für die Nachhallzeit sind die folgenden Bezeichnungen gebräuchlich:

- (Reverb) Time
- Decay (Time)
- (Room) Size Manchmal wird auch die Raumgröße in Kubikmetern, Kubik-Fuß oder geometrischen Maßen (Länge x Breite x Höhe) dargestellt.

Bevor der eigentliche Hall einsetzt, wird das Signal durch ein Vor-Echo verzögert, damit der Hall sich vom Original-Sound besser absetzen kann. Dieses Predelay sollte von seiner Länge auf die Nachhallzeit abgestimmt sein. Wenn Sie die Hallzeit in einem Programm erheblich verändert haben - etwa von 3 Sekunden auf 1 Sekunde - kontrollieren Sie anschließend den Wert für das Predelay. Für Standard-Halleffekte gelten etwa folgende Zuordnungen:

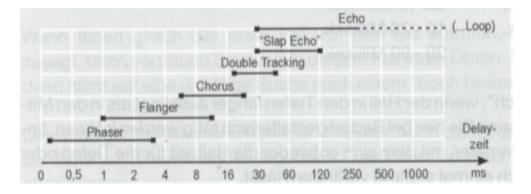
Reverb Time	Predelay
0,5 -1 Sek.	5-10 Millisek.
1 - 1,5 Sek.	ca. 10 Millisek.
1,5-2,0 Sek.	10-15 Millisek.
2,0-2,5 Sek.	ca. 15 Millisek.
2,5-3,5 Sek.	15-20 Millisek
3,5 - 5 Sek.	20-30 Millisek.

Es wirkt "realistisch", wenn der Hall in den Tiefen länger ausklingt als in den Mitten und Höhen. Damit Sie hier bei Bedarfgestalterisch tätig werden können, finden Sie einen Parameter, mit dem sich entweder die Hallzeit für die Tiefen oder für die Höhen noch einmal separat verändern lässt.

Weil in natürlichen Räume Höhen oberhalb von 2.500 - 4.000 Hz weniger stark reflektiert werden, können Sie bei den entsprechenden Reverb-Programmen die Höhen reduzieren oder beschneiden. Nutzen Sie diesen Parameter, denn ein Hall mit vollem Höhenanteil (zum Beispiel bis 15.000 Hz) kann leicht dazu führen, dass sich in einem Gesamt-Sound ein "Stau" in den Höhen bildet

Gated und Reverse - wann und wie viel?

Gated Reverb und Rückwärts-Hall empfindet das Ohr meist nicht als "Raum", sondern als festen Bestandteil des Sounds, der damit angereichert wird. Das wird vor allem bei einer Snare mit Gated Reverb deutlich: Der Effekt "verlängert" den Ausklang. Wenn Sie die


Abklingzeit optimal eingestellt haben, wird die rhythmische Funktion der Snare durch den Gated Reverb unterstützt. In dieser "klassischen" Anwendung können Sie Gated Reverb meist recht hoch dosieren. Das gleiche gilt für die Zusammenarbeit mit einem anderen Rhythmusinstrument, das innerhalb eines Grooves seinen festen Platz hat - wie etwa auch die Bassdrum.

Bei Rhythmus-Instrumenten, die mehr im Bereich des Mikrotiming aktiv sind wie HiHats, Shaker, Maracas und dergleichen müssen Sie diese Reverbs erheblich geringer dosieren. Oft sind sie hier auch ungeeignet, da sie ein "mechanisches" Feeling in den Groove bringen. Das gleiche gilt für klingende Rhythmus-Instrumente wie zum Beispiel Gitarre oder Sequenzer.

Ein attraktiver Effekt können längere und sehr lange Gated- und Reverse Reverbs für Melodie-Instrumente (Gitarre, Sax) oder auch Gesang sein. Bei geschickter Dosierung entsteht ein intensiver räumlicher Eindruck, gleichzeitig bleibt das Klangbild "trocken" und "aufgeräumt".

Delay, Echo

"Delay" ist der Überbegriff für diese Gruppe von Effekten und heißt wörtlich "Verzögerung". Auch Echos sind daher Delay-Effekte. Je nachdem, wie lange ein Sound verzögert wird, entstehen unterschiedliche Effekt-Arten.

Delay-Zeiten und die dazugehörigen Effekte. Die Zeiten für Phaser, Flanger, Chorus und Double Tracking werden um einen mittleren Wert herum kontinuierlich nach oben und unten verschoben. Diese Verschiebung bezeichnet man als Modulation ("Delay Time Modulation").

Effekt-Arten wie Flanger und Chorus, Chorus und Echogehen ineinander über. Von einem Echo spricht man erst, wenn man die Wiederholung eines Sounds hören kann. Je nach Verlauf und Klangfarbe ist das früher oder später möglich. So hört man ein scharfes Handclap bereits mit einer Verzögerung von etwa 30 Millisekunden als Echo, ein Saxofon mit anschwellendem Ton möglicherweise erstab200oder500Millisekunden. Echos können beliebig lang sein. Wenn ein Echo so lang wird, dass seine Zeit einen ganzen Takt oder eine musikalische Phrase umfasst, spricht man auch von einem Loop (=Schleife), insbesondere dann, wenn sich die Phrase mehrmals - oder sogar "endlos" - wiederholt.

Phaser, Flanger, Chorus

Durch diese Effekte wird ein Sound kontinuierlich "in Bewegung versetzt". Er wechselt sozusagen ständig die Farbe und wird dadurch breiter und auffälliger.

Bestimmte Arten von Chorus bewirken, dass ein Sound verdoppelt, verdreifacht oder noch weitergehend vervielfacht wird. Bei einer Verdopplung klingt es so, als hätte beispielsweise ein Sänger seinen Part zwei Mal hintereinander synchron zu sich selbst - gesungen.

Mit breiten Flanger- und Chorus-Effekten erreichen Sie bei Gitarren, Bässen oder vergleichbaren Keyboard-Sounds eine Art von "Ensemble"-Wirkung. Es werden sozusagen mehr Musiker "vorgetäuscht" als tatsächlich vorhanden sind. Attraktiv ist dies insbesondere bei einer Gitarre, die durch gebrochene Akkorde in einem Arrangement als "harmonische Stütze" wirkt.

Mit entsprechenden Presets werden rotierende Lautsprecher ("Rotary Speaker", "Leslie-Kabinett") nachempfunden. Standard-Instrumente für Rotary Speaker sind Keyboards und Gitarren. Wenn Sie experimentierfreudig sind, schrecken Sie nicht davor zurück, mit so einem Sound auch Gesang zu bearbeiten.

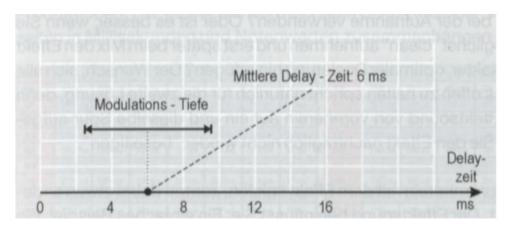
Phaserund Flanger werden meistgleichbedeutend verwendet. Genau genommen hat ein Phaser aber kürzere Basis-Delayzeiten als ein Flanger und ist die "zurückhaltendste" Variante dieser Effekt-Kategorie. Ein typischer Phaser mit Delayzeiten von 0,1 bis 1 Millisekunde klingt annähernd "seidig". Mit einem leichten Phaser werden "statische" Keyboard-Sounds lebendiger, ebenso direkt am Instrument abgenommene E-Gitarren, die oft einfach nur ein wenig zu "clean" sind.

Phaser und Flanger eignen sich - überwiegend bei langsamen Stücken - um damit Becken zu bearbeiten. Bei schnelleren Stücken kann ein Flanger eine HiHat farbig und interessant gestalten.

Phaser-, Flanger- und teils auch Chorus-Effekte können Sie vielfach mit einer Balance von 100% Effekt -also ohne Anteile des Direktsounds - einsetzen.

Phaser, Flanger und Chorus können folgende Risiken und Nebenwirkungen haben: Längere Verzögerungen (ab etwa 10 Millisekunden) können Timing-Probleme zur Folge haben. Der Flanger- oder Chorus-Sound "kommt zu spät" und führt dazu, dass der Groove "schleppt". Sie haben in diesem Fall zwei zur Abhilfe:

- Wählen Sie ein "weniger breites" Preset mit kürzeren Zeiten und/oder geringerer Modulations-Tiefe.
- Reduzieren Sie den prozentualen Anteil des Effekts, erhöhen Sie den direkten Anteil. Wenn Sie den Effekt im Pegel zurückgenommen haben, können Sie versuchsweise bestimmte Parameter wie das Feedback erhöhen, damit er sich wieder stärker bemerkbar macht.


Manche Presets verwenden 2, 4 oder 6 verschiedene "Stimmen" {Voices} pro Effekt. Dies entspricht 2, 4 oder 6 verschiedenen Delay-Zeiten. Ein solcher Effekt klingt für sich allein möglicherweise beeindruckend, nimmt aber auf Grund seiner "Breite" viel Platz in Anspruch. Weil der Effekt so breit und "dickflüssig" ist, kann er mitunter ein Arrangement regelrecht "verschmieren". Auch hier gilt:

- Probieren Sie ein "weniger breites" Preset mit kürzeren Zeiten und/oder geringerer Modulations-Tiefe. Probieren Sie einen Sound, der von seinen Delay-Zeiten mehr im Bereich des Phasing liegt.
- Reduzieren Sie den Effekt-Anteil bzw. erhöhen Sie den "trockenen" Anteil.

- Wählen Sieein Preset mit weniger Stimmen. Möglicherweise reicht eine einzige Flanger- oder Chorus-Stimme.
- Benutzen Sie einen Equalizer, um den Effekt "auszudünnen": Reduzieren Sie die Tiefen und unteren Mitten bis etwa 400 Hz, eventuell auch die Höhen. Die meisten Effekt-Geräte haben einen Equalizer-Baustein, oft ist er schon (aktiver) Bestandteil eines Presets.

Delay – Die wichtigsten Begriffe und Parameter

Phaser, Flanger und Chorus sind so genannte Modulations-Effekte. Die Delay-Zeit ist hier nicht statisch, sondern wird ständig um einen Mittelwert herum verändert. Die Veränderung hat bestimmte "Ausschläge" nach oben und unten, die man als Modulations-Tiefe (= Modulation Depth) bezeichnet. Diese Modulations-Tiefe ist (neben dem Feedback) der Parameter, der über die "Breite" des Effekts entscheidet: Breite Modulation = Breiter Effekt.

Die Modulation erfolgt in einer bestimmten Geschwindigkeit. Sie wird als Modulations-Frequenz = Modulation Frequency bezeichnet. Angeboten werden meist Geschwindigkeiten von 0,1 Hz bis 10 Hz. Bei 0,1 Hz dauert es 10 Sekunden, bis die gesamte Modulations-Tiefe einmal "durchgefahren" wurde. Der Effekt klingt dann ruhig und "sphärisch". Bei 10 Hz schwingt der Effekt 10 mal pro Sekunde durch seine volle Breite, und es entsteht ein "Blubbern". Diese Geschwindigkeit entspricht zum Beispiel einem sich schnell drehenden "Rotary Speaker".

Die Modulations-Frequenz wird bei den meisten Presets von einem Oszillator gesteuert, einem so genannten LFO (= Low Frequency Oscillator). Möglich sind aber auch andere Steuerquellen wie zum Beispiel ein Zufalls Generator, Random genannt oder die Intensität bzw. die Verlaufsform des Eingangssignals, die Envelope. Mit einem Zufallsgenerator oder der Envelope-Steuerung per Eingangssignal haben Sie attraktive, einen Flanger oder Chorus von seiner Gleichförmigkeit zu befreien. Gerade die Steuerung durch das Eingangssignal eröffnet hochinteressante Effekte, die sich oft mit dem ursprünglichen Sound zu einer Einheit verbinden. Diese "fortgeschrittene" Art der Steuerung bieten allerdings nicht alle Effekt-Prozessoren.

Ein Parameter, mit dem Sie die Intensität des Effekts steigern können ist das Feedback, manchmal auch Regeneration genannt. Bei einer Delay-Zeit von 5 bis 8 Millisekunden und maximaler Modulationstiefe führt ein hoch dosiertes Feedback zum so genannten "Jet"- oder

"Düsenjäger"-Effekt: Es klingt, als ob in Ihrer Nähe ein Airbus abhebt. Ein Feedback von 100% führt bei manchen Geräten zu einem "stehenden Ton", ähnlich wie bei einem entsprechend betriebenen Gitarren-Amp.

Effekte - jetzt gleich oder nachträglich?

Insbesondere bei Gitarren-Tracks taucht im Studio immer wieder die Frage auf: Soll der Spielerden Effekt schon bei der Aufnahme verwenden? Oder ist es besser, wenn Sie die Gitarre erst einmal möglichst "clean" aufnehmen und erst später beim Mix den Effekt auswählen und dann in exakter, optimaler Dosierung hinzufügen? Der Wunsch, sich alle Optionen bis zum Schluss offen zu halten spricht natürlich für die zweite Lösung, denn wenn Sie Instrument + Effektsound von vornherein auf ein und dieselbe Spur aufgenommen haben, können Sie den Effekt nachträglich nicht wieder "beseitigen".

Wenn Sie als Gitarrist von vornherein mit dem Effekt spielen, kommt dabei etwas anderes heraus als ohne Effekt. Der Effektsound beeinflusst Sie. Ein einfaches Beispiel: Ein nachträglich hinzugefügter Chorus-Effekt bringt oft Timing-Probleme: Die Gitarre "schleppt". Wenn Sie als Spieler den Chorus von Beginn an mit dabei haben, werden Sie automatisch Ihr Spiel so korrigieren, dass es "in time" ist. Unbewusst werden Sie alles, was Sie spielen ein wenig "nach vorn ziehen". Damit ist das Problem erledigt. Um dem Effekt "Platz zu geben" - damit er zur Geltung kommen kann - werden Sie auch "quantitativ" etwas zurückhaltender spielen als bei einem "trockenen" Sound.

Wenn Sie mit einem Echo - oder mit mehreren - spielen, wird Ihre Spielweise automatisch eine Art "Dialog" mit dem Effekt sein. Sie werden auch hier Ihre Spielweise ganz von selbst so dosieren, dass für die Echos genügend "Platz" bleibt.

Dies alles spricht dafür, dass Sie einen beabsichtigten Effekt immer von vornherein mit dabei haben sollten. Wenn Sie knapp an Aufnahmespuren sind, nehmen Sie das Instrument + Effekt auf eine Spur auf. Achten Sie darauf, dass Sie den Effekt in diesem Fall nicht überdosieren.

Wenn Sie genügend Spuren zur Verfügung haben gehen Sie wie folgt vor:

- Der Gitarrist hört beim Spielen Instrument + Effekt in dem für ihn angenehmen Lautstärke-Verhältnis. Am Mischpult erscheinen Instrument und Effekt an zwei separaten Eingängen. Sie belegen damit 2 Spuren. Auf diese Weise können Sie später jederzeit die Balance korrigieren.
- Die E-Gitarre ist das Instrument, für das es mit Abstand die meisten Effektsounds gibt. Grundsätzlich trifft die Devise "Effektsound sofort" aber natürlich auf alle Instrumente zu, die beispielsweise ein Solo mit einem bestimmten Wahwah, Chorus, Echo, Reverb usw. spielen möchten.

Echo

Sie erinnern sich an die Outdoor-Performance mit dem Echo-Effekt zu Beginn dieser Versuchsanleitung?

Hier passen Sie als Spieler Ihr Tempo der Zeit an, die eine Mauer oder ein Wald braucht, um ein Echo zu Ihnen "zurückzuschicken". Dass Echo-Zeiten und Tempo aufeinander abgestimmt sein müssen, gilt natürlich auch für Studio Produktionen. Die Tabelle auf den nächsten Seiten stellt dar, wie Tempo, Delayzeiten in Millisekunden und Notenwerten zusammenhängen.

ВрМ				1	Ja.	1	1	ВрМ				1	Ja.	1	3
080	3000 ms	1500 ms	750 ms	375 ms	250 ms	188 ms	94 ms	130	1846 ms	923 ms	462 ms	231 ms	154 ms	115 ms	58 ms
081	2963 ms	1481 ms	741 ms	370 ms	247 ms	185 ms	93 ms	131	1832 ms	916 ms	458 ms	229 ms	153 ms	115 ms	57 ms
082	2927 ms	1463 ms	732 ms	366 ms	244 ms	183 ms	91 ms	132	1818 ms	909 ms	455 ms	227 ms	152 ms	114 ms	57 ms
083	2892 ms	1446 ms	723 ms	361 ms	241 ms	181 ms	90 ms	133	1805 ms	902 ms	451 ms	226 ms	150 ms	113 ms	56 ms
084	2857 ms	1429 ms	714 ms	357 ms	238 ms	179 ms	89 ms	134	1791 ms	896 ms	448 ms	224 ms	149 ms	112 ms	56 ms
085	2824 ms	1412 ms	706 ms	353 ms	235 ms	176 ms	88 ms	135	1778 ms	889 ms	444 ms	222 ms	148 ms	111 ms	56 ms
086	2791 ms	1395 ms	698 ms	349 ms	233 ms	174 ms	87 ms	136	1765 ms	882 ms	441 ms	221 ms	147 ms	110 ms	55 ms
087	2759 ms	1379 ms	690 ms	345 ms	230 ms	172 ms	86 ms	137	1752 ms	876 ms	438 ms	219 ms	146 ms	109 ms	55 ms
088	2727 ms	1364 ms	682 ms	341 ms	227 ms	170 ms	85 ms	138	1739 ms	870 ms	435 ms	217 ms	145 ms	109 ms	54 ms
089	2697 ms	1348 ms	674 ms	337 ms	225 ms	169 ms	84 ms	139	1727 ms	863 ms	432 ms	216 ms	144 ms	108 ms	54 ms
090	2667 ms	1333 ms	667 ms	333 ms	222 ms	167 ms	83 ms	140	1714 ms	857 ms	429 ms	214 ms	143 ms	107 ms	54 ms
091	2637 ms	1319 ms	659 ms	330 ms	220 ms	165 ms	82 ms	141	1702 ms	851 ms	426 ms	213 ms	142 ms	106 ms	53 ms
092	2609 ms	1304 ms	652 ms	326 ms	217 ms	163 ms	82 ms	142	1690 ms	845 ms	423 ms	211 ms	141 ms	106 ms	53 ms
093	2581 ms	-	645 ms	323 ms	215 ms	BUT THE REAL PROPERTY.	MANAGEMENT AND PROPERTY.	143	1678 ms	-	Marie Colonia		-		52 ms
-	2553 ms	1290 ms				161 ms	81 ms		-	839 ms	420 ms	210 ms	140 ms	105 ms	
094		1277 ms	638 ms	319 ms	213 ms	160 ms	80 ms	144	1667 ms	833 ms	417 ms	208 ms	139 ms	104 ms	52 ms
095	2526 ms	1263 ms	632 ms	316 ms	211 ms	158 ms	79 ms	145	1655 ms	828 ms	414 ms	207 ms	138 ms	103 ms	52 ms
096	2500 ms	1250 ms	625 ms	313 ms	208 ms	156 ms	78 ms	146	1644 ms	822 ms	411 ms	205 ms	137 ms	103 ms	51 ms
097	2474 ms	1237 ms	619 ms	309 ms	206 ms	155 ms	77-ms	147	1633 ms	816 ms	408 ms	204 ms	136 ms	102 ms	51 ms
098	2449 ms	1224 ms	612 ms	306 ms	204 ms	153 ms	77 ms	148	1622 ms	811 ms	405 ms	203 ms	135 ms	101 ms	51 ms
099	2424 ms	1212 ms	606 ms	303 ms	202 ms	152 ms	76 ms	149	1611 ms	805 ms	403 ms	201 ms	134 ms	101 ms	50 ms
100	2400 ms	1200 ms	600 ms	300 ms	200 ms	150 ms	75 ms	150	1600 ms	800 ms	400 ms	200 ms	133 ms	100 ms	50 ms
101	2376 ms	1188 ms	594 ms	297 ms	198 ms	149 ms	74 ms	151	1589 ms	795 ms	397 ms	199 ms	132 ms	99 ms	50 ms
102	2353 ms	1176 ms	588 ms	294 ms	196 ms	147 ms	74 ms	152	1579 ms	789 ms	395 ms	197 ms	132 ms	99 ms	49 ms
103	2330 ms	1165 ms	583 ms	291 ms	194 ms	146 ms	73 ms	153	1569 ms	784 ms	392 ms	196 ms	131 ms	98 ms	49 ms
104	2308 ms	1154 ms	577 ms	288 ms	192 ms	144 ms	72 ms	154	1558 ms	779 ms	390 ms	195 ms	130 ms	97 ms	49 ms
105	2286 ms	1143 ms	571 ms	286 ms	190 ms	143 ms	71 ms	155	1548 ms	774 ms	387 ms	194 ms	129 ms	97 ms	48 ms
106	2264 ms	1132 ms	566 ms	283 ms	189 ms	142 ms	71 ms	156	1538 ms	769 ms	385 ms	192 ms	128 ms	96 ms	48 ms
107	2243 ms	1121 ms	561 ms	280 ms	187 ms	140 ms	70 ms	157	1529 ms	764 ms	382 ms	191 ms	127 ms	96 ms	48 ms
108	2222 ms	1111 ms	556 ms	278 ms	185 ms	139 ms	69 ms	158	1519 ms	759 ms	380 ms	190 ms	127 ms	95 ms	47 ms
109	2202 ms	1101 ms	550 ms	275 ms	183 ms	138 ms	69 ms	159	1509 ms	755 ms	377 ms	189 ms	126 ms	94 ms	47 ms
110	2182 ms	1091 ms	545 ms	273 ms	182 ms	136 ms	68 ms	160	1500 ms	750 ms	375 ms	188 ms	125 ms	94 ms	47 ms
111	2162 ms	1081 ms	541 ms	270 ms	180 ms	135 ms	68 ms	161	1491 ms	745 ms	373 ms	186 ms	124 ms	93 ms	47 ms
112	2143 ms	1071 ms	536 ms	268 ms	179 ms	134 ms	67 ms	162	1481 ms	741 ms	370 ms	185 ms	123 ms	93 ms	46 ms
113	2124 ms	1062 ms	531 ms	265 ms	177 ms	133 ms	66 ms	163	1472 ms	736 ms	368 ms	184 ms	123 ms	92 ms	46 ms
114	2105 ms	1053 ms	526 ms	263 ms	175 ms	132 ms	66 ms	164	1463 ms	732 ms	366 ms	183 ms	122 ms	91 ms	46 ms
115	2087 ms	1043 ms	522 ms	261 ms	174 ms	130 ms	65 ms	165	1455 ms	727 ms	364 ms	182 ms	121 ms	91 ms	45 ms
116	2069 ms	1034 ms	517 ms	259 ms	172 ms	129 ms	65 ms	166	1446 ms	723 ms	361 ms	181 ms	120 ms	90 ms	45 ms
117	2051 ms	1026 ms	513 ms	256 ms	171 ms	128 ms	64 ms	167	1437 ms	719 ms	359 ms	180 ms	120 ms	90 ms	45 ms
118	2034 ms	1017 ms	508 ms	254 ms	169 ms	127 ms	64 ms	168	1429 ms	714 ms	357 ms	179 ms	119 ms	89 ms	45 ms
119	2017 ms	1008 ms	504 ms	252 ms	168 ms	126 ms	63 ms	169	1420 ms	710 ms	355 ms	178 ms	118 ms	89 ms	44 ms
120	2000 ms	1000 ms	500 ms	250 ms	167 ms	125 ms	63 ms	170	1412 ms	706 ms	353 ms	176 ms	118 ms	88 ms	44 ms
121	1983 ms	992 ms	496 ms	248 ms	165 ms	124 ms	62 ms	171	1404 ms	702 ms	351 ms	175 ms	117 ms	88 ms	44 ms
122	1967 ms	984 ms	492 ms	246 ms	164 ms	123 ms	61 ms	172	1395 ms	698 ms	349 ms	174 ms	116 ms	87 ms	44 ms
123	1951 ms	976 ms	488 ms	244 ms	163 ms	122 ms	61 ms	173	1387 ms	694 ms	347 ms	173 ms	116 ms	87 ms	43 ms
124	1935 ms	968 ms	484 ms	242 ms	161 ms	121 ms	60 ms	174	1379 ms	690 ms	345 ms	172 ms	115 ms	86 ms	43 ms
125	1920 ms	960 ms	480 ms	240 ms	160 ms	120 ms	60 ms	175	1371 ms	686 ms	343 ms	171 ms	114 ms	86 ms	43 ms
126	1905 ms	952 ms	476 ms	238 ms	159 ms	120 ms	60 ms		1364 ms	682 ms	341 ms	170 ms	114 ms	85 ms	43 ms
127	1890 ms	945 ms			157 ms			176		678 ms	339 ms	169 ms		85 ms	
THE OWNER OF THE OWNER.			472 ms	236 ms	77.22.53	118 ms	59 ms	177	1356 ms			714.715	113 ms	1111111	42 ms
128	1875 ms	938 ms	469 ms	234 ms	156 ms	117 ms	59 ms	178	1348 ms	674 ms	337 ms	169 ms	112 ms	84 ms	42 ms
129	1860 ms	930 ms	465 ms	233 ms	155 ms	116 mg	58 ms	179	1341 ms	670 ms	335 ms	168 ms	112 ms	84 ms	42 ms

Das Echo ist ein "übersichtlicher" Effekt; es gibt grundsätzlich nur 2 Parameter: Die Delay-Zeit und das Feedback (Rückkopplung). Das Feedback entscheidet darüber, wie oft sich das Echo wiederholt. Ein Feedback von 100% hat theoretisch - eine endlose Wiederholung zur Folge.

Echo-Praxis

Manche Geräte haben Programme mit 2, 4 oder sogar 6 Echos, die jeweils unterschiedlich lang sein können. Einerseits können Sie damit interessante "Echo-Grooves" komponieren, andererseits besteht aber auch das Risiko, dass Sie den Überblick über das Preset verlieren. Arbeiten Sie mit so einem Vielfach-Echo-Preset nur dann, wenn es Ihnen spontan zusagt. Die Erfahrung zeigt: Sobald Sie mit den Modifikationen eines Effekts länger als 5 Minutenverbringen, laufen Sie Gefahr, die Orientierung zu verlieren.

Wenn Sie sich noch einmal an das Beispiel mit der Mauer bzw. dem Wald erinnern: Ein "natürliches" Echo hat immer eine andere Klangfarbe als das Original, denn die Luft absorbiert einen Teil der Schallenergie. Das Echo daher hat weniger Höhen und Tiefen. Dieser Umstand ist auch für einen Echo-Effekt im Studio von Bedeutung, denn wenn ein Echo exakt so klingt wie das Original, wirkt es einfach nur wie eine Wiederholung. Differenzieren Sie die Echos, indem Sie mit dem Equalizer die Höhen und Tiefen reduzieren, eventuell auch noch die Mitten im Bereich von 250 Hz - 300 Hz. Bei vielen Multi-Effektgeräten können Sie dazu auch den eingebauten Equalizer verwenden.

Gegenüber Hall hat ein Echo den Vorteil, dass es Pausen hat. In diesen Pausen kann es einen Sound nicht "zuschmieren". Wenn Sie daher einen Eindruck von großer "räumlicher Tiefe" erzeugen möchten, ist ein Echo meist einem langen Hall überlegen. In diesem Fall haben sich mitunter Zweifach-Echos bewährt: Zum Beispiel eines mit der Länge von Viertelnoten, ein zweites, leiseres mit halben Noten.

Eine überzeugende "räumliche Tiefe" erhalten Sie auch mit einer Kombination von Echo + Reverb. Hier dient der Hall meist dazu, das Klangbild noch zusätzlich ein wenig zu "glätten" bzw. zu "verbinden". Achten Sie aber darauf, dass dieses "verbinden" nicht in ein "Zuschmieren" übergeht.

Bei manchen Effektgeräten können Sie das Predelay (vor dem Reverb) so lang einstellen, dass sich eine Echo-Wirkung ergibt. Das Resultat ist dann ein spezieller "Echo-Hall". Dies ist zunächst meist ein interessanter Effekt, der aber auf die Dauer oft langweilig oder penetrant wirkt.

Der einzige mögliche Nachteil eines Echo-Effekts: Er kann dazu führen, dass durch ständige, gleichförmige Wiederholungen ein Groove "mechanisch" oder sogar "stumpfsinnig" klingt. Meist ist hier Abhilfe leicht möglich: Reduzieren die den Anteil des Effekts und die Zahl der Wiederholungen (Feedback), reduzieren Sie die Höhen, die oberen Präsenzen und die Tiefen.

Detune/Pitch-Effekte

Mit dieser Kategorie von Effekten werden Intervalle bzw. Verstimmungen erzeugt. Meist können Sie den Pitch-Effekt mit einem Delay und einem Reverb kombinieren. Er hebt sich dann vom Original zeitlich - bzw. "räumlich" - besser ab. Pitch Change ist meist nicht frei von Neben-Effekten wie "Zirpen" oder "Grummeln". Ein nachfolgender Reverb dient daher oft

dazu, diese ausgesprochen "technisch" klingenden Nebeneffekte zu kaschieren bzw. zu "übertünchen".

Der Grad der Verstimmung wird einerseits in musikalischen Intervallen ausgedrückt. Zur Verfügung steht meist ein Bereich von -2 bis +2 Oktaven mit einer groben Abstufung von Halbtönen/Semitones. Ein Halbton entspricht 100 Cents. Innerhalb dieser Auflösung können Sie noch einmal eine Feinstimmung/Fine Tune vornehmen.

"Pur" gehört ist ein Pitch Change - je nach Ausgangssound - allenfalls in der Größenordnung eines Halbtons akzeptabel. Alle größeren Transpositionen müssen Sie in der Lautstärke entsprechend vorsichtig anwenden, geschickt in das Arrangement "einbetten" und möglichst immer mit Reverb "abrunden".

Auf jeden Fall reicht die Qualität dieser Effekte, um damit ähnliche Ensemble Wirkungen zu erzielen wie mit einigen Chorus-Programmen. In Verbindung mit zusätzlichen Delays von 10-40 Millisekunden dienen die meisten Pitch-Programme daher auch der Sound-"Verbreiterung", Stimmen-Verdopplung bzw. einer noch weitergehenden Vervielfachung.

Einige weitere Anwendungen:

- 6 String-Gitarre: Geschickt dosiert und gut in ein Arrangement eingebettet, weckt ein Pitch Shifter mit+/-1 Oktave Erinnerungen an eine 12string-Gitarre.
- In Verbindung mit einem (Gated) Reverb erzeugt eine leichte Verstimmung interessante "Räume" iürperkussive Instrumente.
- Science Fiction & Fantasy: Bestimmte Presets erzeugen Assoziationen an "abhebende" UFOs, skurrile Weltraum-Szenerien oder an "Gespenster- und Unterwelt". Angewandt auf Rhythmus-Tracks bringen solche Effekte als "momentane Fill-Ins" vielfach kurzweilige Auflockerungen in ein Arrangement.
- Tonhöhen-Korrektur: Hierwird Pitch Change nicht als Sound-Effekt eingesetzt, sondern als "Werkzeug", um bei Sängerinnen und Sängern die Intonation zu korrigieren (auch live).

Gain/Distortion, Filter, Multi/Kombi-Effekte

Distortion-Effekte werden hauptsächlich für E-Gitarren verwendet. Je nach Stilrichtung eignen sie sich allerdings auch für Bässe, Drums und bestimmte Keyboard-Sounds. Filter-Effekte wie automatische Sweeps oder Wahwah werden oft mit Crunch, Overdrive etc. kombiniert. Zusätzliche "Bausteine" wie Chorus, Pitch Change und Reverb ergeben einen oft raffinierten Multi-Effekt.

Abgesehen von "reinen" Hallgeräten ist praktisch jedes Effektgerät ein Multieffekt-Prozessor. Angeboten wird die ganze Palette von konventionellen- und Spezialeffekten. Multi- bzw. Kombi-Effekte enthalten mehrere Effekte parallel oder in einer "Serien-Schaltung", zum Beispiel:

- Chorus>Reverb
- Distortion>Chorus
- Distortion>Chorus>Echo>Reverb
- Pitch Change>Echo (>Reverb)
- Overdrive>Pitch>Gated Reverb
- und andere Konstellationen mehr. Viele Effekt-Prozessoren sind wie ein Baukasten konstruiert. Die einzelnen Effekte sind in der Struktur des Geräts als "Blöcke" definiert, die man in einer gewünschten Reihenfolge anordnen kann.

Zusätzlich zu den genannten Effekt-Arten ist es möglich, zum Beispiel einzelne Delays oder andere Bestandteile des Multi-Effekts an beliebiger Stelle im Stereo-Panoramazu positionieren oder hin-und herwandern zu lassen {"Panner"}. Um Rauschen als Nebenwirkung von Effekt-Arten wie Distortion zu reduzieren, finden Sie in vielen Multieffekt-Prozessoren einen Expander bzw. ein Noise Gate. Auch ein Kompressor und ein Equalizer gehören meist zur Ausstattung.

Der Umgang mit Multieffekt-Prozessoren

Ein Multi-Effektgerät ist etwa so komplex wie ein Textverarbeitungsprogramm. Selbst fortgeschrittene Anwender haben nur selten einen vollständigen Überblick über alle . Der Versuch, so ein Gerät hundertprozentig zu begreifen, ist auch einigermaßen sinnlos: Wenn Sie sich 2 Monate mit etwas anderem beschäftigen, haben Sie das meiste wieder vergessen.

Nachdem Sie ein paar unverbindliche Streifzüge durch die Presets gemacht haben, versuchen Sie herauszufinden, was im Moment an diesem Gerät für Sie überhaupt interessant ist. Vielleicht ist es nur der Hall, vielleicht sind es Kombi-Programme mit Delay- oder Pitch-Effekten, vielleicht auch komplexere Presets für E-Gitarre mit Crunch, Overdrive etc.

Suchen Sie im Schelldurchgang nach einem halben Dutzend Presets, von denen Sie spontan begeistert sind. Schreiben Sie sich die Nummern dieser Presets auf. Falls Ihr Effektprozessor Ihnen beispielsweise insgesamt 200 Programme anbietet: vergessen Sie die übrigen 194 - zumindest vorerst.

Kopieren Sie diese 6 Presets hintereinander auf die User-Plätze 10, 20, 30, 40 usw. Fall Ihr Gerät nicht genügend Benutzer-Plätze hat, wählen Sie ein engeres Raster. Die Positionen 11-19, 21-29 usw. benutzen Sie später zum Speichern von Varianten des jeweiligen Sounds. Geben Sie den 6 Sounds eigene Namen.

Finden Sie dann heraus: Was können Sie tun, um einen Sound an eine bestimmte Situation fein anzupassen. Gehen Sie also beim Reverb zu den Parametern für die Hallzeit und das Predelay, bei Chorus-Sounds zur Delay Time und zum Feedback, bei Pitch-Programmen zum Fine Tuning usw. Wenn Sie das Gefühl haben, eine attraktive Variante des Presets programmiert zu haben, ändern Sie den Namen entsprechend ab und speichern Sie den Sound auf dem nächsten freien Platz.

Die 6 Presets, mit deren Varianten Sie umgehen, entsprechen Ihren derzeitigen Bedürfnissen. Wenn Sie feststellen, dass sich Ihre Interessen gewandelt oder erweitert haben, starten Sie zu einer neuen Runde in Ihrer "Effekt Experience".

Nur ein einziges Effektgerät - was tun?

Die Welt der Effekte ist groß, bunt, vielfältig - und verlockend. Den Verlockungen zu erliegen bedeutet meist: Sie brauchen mehrere Effektgeräte gleichzeitig, um alle Ihre Ideen zu realisieren. Vor allem in einer Mischung können Sie nur mit mehreren Effektprozessoren differenziert arbeiten. Vielleicht aber haben Sie zur Zeit Ihre Prioritäten gerade anderswo gesetzt und stehen tatsächlich "nur" mit einem einzigen Effektprozessor da.

Machen Sie sich klar, dass dieser Zustand auch seine Vorteile hat. Gehen Sie in die Offensive.

Sie müssen in dieser Situation einfach die Entscheidung über Effekte früher treffen als ganz zum Schluss beim Mixdown. Wenn Sie einzelne Tracks aufnehmen: Denken Sie darüber nach, ob Sie den jeweiligen Sound durch einen Effekt unterstützen könnten. Spielen und singen Sie mit Effekten. Nehmen Sie vor allem Gitarren sofort mit Effekten auf, aber zum Beispiel auch Keyboard-Sounds, Perkussions-Overdubs oder "Spezial-Sounds" aller Art. Geben Sie zu Solo-Instrumenten sofort eine Dosis Echo hinzu. Wenn sich der Lead-Gesang mit einem besonderen Delay, Pitch-Effekt oder Reverb von vornherein optimal "verkauft": Nehmen Sie den Effekt mit auf. Für direkt mitaufgezeichnete Effekte gilt: Der Anteil an (linearem) Reverb sollte gering sein. Gated oder Reverse Reverb können Sie dagegen ganz nach Ihrem Gefühl dosieren, ebenso Echos, Chorus oder Pitch-Effekte.

Beim Mixdown benutzen Sie Ihr Effektgerät nur noch, um einzelne Spuren mit einem einfachen, "allgemeinen" Hall-Programm abzurunden, zum Beispiel mit einem Raum-, Saaloder Hallplatten-Preset mit einer Dauer von 1,5 bis 2 Sekunden.

Sie haben so aus der Not eine Tugend gemacht: Über spezielle Sound Merkmale haben Sie sofort entschieden und sie gleich mit aufgezeichnet. Beim Mix brauchen Sie sich um derlei Details nun nicht mehr zu kümmern sondern können Ihre volle Konzentration auf das "Gesamtbild" der Produktion richten.

Effekte in Sound-Modulen, Samplern, Drumcomputem und Synthesizern MIDI-gesteuerte Sound-Quellen enthalten manchmal die ganze Palette von Effekten. Lineare oder Gated Reverbs sind Bestandteil der Factory Presets: Ein Flügel klingt "wie in einem Konzertsaal", Drums sind vielfach mit (Gated) Reverb aufgewertet - selbst Gitarren und Bässe haben meist eine "HallFahne". Meist ist das typisch japanische Streben nach Gefälligkeit und Harmonie für eine Überdosis an Reverb bei Sound-Modulen verantwortlich, im übrigen sind die meisten Reverbs einfach zu lang. Wenn die Effekte und ihre Dosierung nicht in Ihr Konzept passen, bleibt Ihnen leider nichts anderes übrig, als den - meist beschwerlichen - Weg ins parametrische Innere der Geräte zu gehen, die Effekte zu reduzieren und den Sound neu abzuspeichern. Wenn Sie schon einmal dabei sind: Verkürzen Sie die Hallzeiten auf ein Minimum von 0,5 bis 1 Sekunde und verringern Sie den Anteil so, dass der Hall eher eine kleine "Belebung" des Sound darstellt bzw. ihn ein wenig "luftiger" klingen lässt. Wenn Ihnen der Reverb oder ein Effekt wie Chorus, Pitch oder Echo suspekt ist: Legen Sie ihn still ohne zu zögern. Denn es geht Ihnen ja nicht darum, in Ihrer Produktion die Factory Sounds aus dem Modul möglichst optimal unterbringen, sondern das Soundmodul sollte Ihrem persönlichen Geschmack entsprechen.