
Prof. Dr. Herbert Fischer Page: I Status: 30 April 2018 File: skript_cpp1_2017_V9

Script for the vhb lecture

Programming in C++
Part 1

Prof. Dr. Herbert Fischer
Deggendorf Institute of Technology

vhb-lecture: Programming in C++ - Part 1 Script

Prof. Dr. Herbert Fischer Page: II Status: 30 April 2018 File: skript_cpp1_2017_V9

 Table of Contents

1	 Introduction to object-oriented programming: C++ .. 1	
1.1	 Development of C++ .. 1	

1.1.1	 	Making a C++ program executable ... 2	
1.1.2	 	Editor ... 2	
1.1.3	 	Compiler .. 3	
1.1.4	 	Linker .. 3	

1.2	 Introduction to the programming environment: C++ ... 3	
1.2.1	 	Simple output program .. 6	
1.2.3	 	Header files ... 7	
1.2.4	 	Libraries .. 8	
1.2.5	 	endl; ... 9	
1.2.6	 	main function .. 9	
1.2.7	 	Brackets und whitespace characters .. 9	
1.2.8	 	Comments ... 10	
1.2.9	 	system("pause"); .. 10	
1.2.10	 system("cls"); .. 10	

vhb-lecture: Programming in C++ - Part 1 Script

Prof. Dr. Herbert Fischer Page: III Status: 30 April 2018 File: skript_cpp1_2017_V9

Primary literature:

Herrmann Dietmar
Grundkurs C++ in Beispielen, vieweg Verlag, 6.Auflage, 2010
ISBN: 3-8266-0910-7

Louis Dirk
C++, Hanser Verlag, 1. Auflage, 2014
ISBN: 3-446-44069-2

Kirch-Prinz Ulla, Kirch Peter
C++ Lernen und professionell anwenden, mitp-Verlag, 5.Auflage, 2010
ISBN: 3-89842-171-6

Arnold Willemer
Einstieg in C++, Galileo Computing, 4.Auflage, 2009
ISBN: 3-8362-1385-0

Secondary literature:

Helmut Balzert
Lehrbuch der Softwaretechnik, Spektrum Akademischer Verlag, 2.Auflage, 2000
ISBN: 3-8274-0480-0

Peter P. Bothner
Ohne C zu C++, Vieweg, 1.Auflage, 2001
ISBN: 3-528-05780-7

Ernst-Erich Doberkat
Das siebte Buch: Objektorientierung mit C++, B.G. Teubner Stuttgart � Leipzig � Wiesbaden, 2000
ISBN: 3-519-02649-X

John R. Hubbard
C++- Programmierung, mitp, 1.Auflage, 2003
ISBN: 3-8266-0910-7

Dietrich May
Grundkurs Softwareentwicklung mit C++, vieweg, 2.Auflage, 2006
ISBN: 3-8348-0125-9

Tools:

Code::Blocks for Windows, Linux, Mac OS (free Software): http://codeblocks.org/downloads/26

Alternatives:
CodeLite for Windows, Linux, Mac OS: http://downloads.codelite.org/
KDevelop for Windows, Linux: https://www.kdevelop.org/download
Dev-C++ for Windows: http://www.bloodshed.net/dev/
XCode for Mac OS: https://itunes.apple.com/de/app/xcode/id497799835

vhb-lecture: Programming in C++ - Part 1 Script

Prof. Dr. Herbert Fischer Page: 1 Status: 30 April 2018 File: skript_cpp1_2017_V9

1 Introduction to object-oriented programming: C++

Chapter 1 gives you a short introduction to C++ programming, and you will create your first
C++ program.

C++ evolved from another programming language called C, a programming language often re-
ferred to as “C with classes”. In today's C++ programs the relationship to C can still be recognized
clearly. C++ was not developed to replace C, but to improve it.

1.1 Development of C++

C++ was developed at Bell Laboratories (Murray
Hill, USA) by Bjarne Stroustrup to implement simu-
lation projects with minimal memory and time re-
quirements. Early versions of the programming
language, initially called "C with classes", have
been in use since 1980. The name C++ is credited
to Rick Mascitti (1983). He points out that the name
C++ signifies the evolutionary nature of the chang-
es from C: "++" is the C increment operator.
C was chosen as the basis for C++ because of its
efficiency and portability. During the further
development of C++, the compatibility to C was
always taken into account. This means that com-
prehensive software written in C remains usable in
C++ programs. These include, for example, tools
and libraries for graphics systems or database ap-
plications.
The SIMULA67 programming language had a de-
cisive influence on the implementation of object-
oriented concepts, in particular in the creation of
classes, inheritance and the design of virtual func-
tions. Operator overloading and the possibility of
freely placing declarations in the program code
was borrowed from the ALGOL68 programming
language. Two programming languages, Ada and

Clu, have influenced the implementation of templates and exception handling.
After all, many developments dating back to the years 1987 to 1991 can be traced back to the ex-
periences and problems of C++ programmers. This includes, for example, multiple inheritance, the
concept of pure virtual functions and the use of shared memory for objects.

vhb-lecture: Programming in C++ - Part 1 Script

Prof. Dr. Herbert Fischer Page: 2 Status: 30 April 2018 File: skript_cpp1_2017_V9

1.1.1 Making a C++ program executable

To create and execute a C++ program, basically
the same steps are necessary as in C:

• The program is created using an editor.
• The program is compiled, which means it is

translated into the computer's machine lan-
guage.

• The linker finally creates the executable file.

1.1.2 Editor

An editor is used to create the text files that contain the C++ code. There are two different types of
files:

• Source files
Source files contain definitions of global variables and functions. Each C++ program consists of at
least one source file.

• Header files
Header files, also called include files, provide the information needed in various source files.
This includes:

• Type definitions, e.g. class definitions
• Declarations of global variables and functions
• Definitions of macros and inline functions

The correct extension must be used when naming the files. However, these vary from compiler to
compiler: The most common extensions for source files are .cpp and .cc. The names of header
files either end - as in C - on .h or they do not have an extension at all. However, extensions like
.hpp may also occur. Header files of the C standard library can of course still be used.

vhb-lecture: Programming in C++ - Part 1 Script

Prof. Dr. Herbert Fischer Page: 3 Status: 30 April 2018 File: skript_cpp1_2017_V9

1.1.3 Compilers

A translation unit consists of a source file and the included header files. The compiler generates an
object file (also called module) from each translation unit; the object file contains the machine
code. In addition to the compilers that generate the machine code directly, there are also C++ into
C translation programs, so-called »C-Front-Compilers«. They translate a C++ program into a C
program. Only then is the object file created with a standard C compiler.

1.1.4 Linker

The linker combines object files into an executable file. Besides the self-generated object files, it
also contains the startup-code and the modules with the used functions and classes of the stand-
ard library.

1.2 Introduction to the programming environment: C++

After this short introduction, we now want to create our first C++ program. We will create a Win32
console application in this course. These are programs which run in a DOS window. We use
Code::Blocks as development environment. However, you can also use any other C++ develop-
ment tool (e.g. Dev-C++, CodeLite, XCodes, MS Visual Studio, etc.).
You can download Code::Blocks from http://codeblocks.org/downloads/26.
A video tutorial on Code::Blocks can be found on the homepage of this course.

Creating a console application with Code::Blocks

Step 1
Start the Code::Blocks development environment. Select New from the File menu and then select
Project or click on Create a new project in the info area.

vhb-lecture: Programming in C++ - Part 1 Script

Prof. Dr. Herbert Fischer Page: 4 Status: 30 April 2018 File: skript_cpp1_2017_V9

Step 2

In the following dialog box, choose the
Console application icon. Then click on
Go. Select C++ as language, then assign
an arbitrary project title to your file and
choose a location where you want to
save your project. Finally check if the
compiler selected is the Gnu GCC
Compiler, and whether the two check-
boxes for Debug und Release have
been selected. At last, click on Finish.

Step 3

Click on Sources in the navigation bar (on the left), then double-click main.cpp. This is our main
program. Code::Blocks has already generated a code skeleton that can be used further on:

#include <cstdlib>
#include <iostream>

using namespace std;

int main(int argc, char *argv[])
{
 cout << “Hello world!” << endl;
 system(“pause”);
 return 0;
}

By clicking on the appropriate icon, the compiler creates an executable program. That means that
in this case a DOS window will open, which generates the output "Hello world!

You can choose one of the following symbols:

 Build: Compiles the program and generates an executable application.
 Run: Executes the program compiled last.
 Build & Run: Compiles the program and then executes it.

vhb-lecture: Programming in C++ - Part 1 Script

Prof. Dr. Herbert Fischer Page: 5 Status: 30 April 2018 File: skript_cpp1_2017_V9

Step 4

Click on “Build & Run“ to compile and execute the program.

Step 5

If the program contains errors, the line that
contains the error will be marked with a red
rectangle (on the left). In addition, an error
message will be displayed below. Correct the
error(s) - in this case the missing semicolon-
and compile again. Then save the file.

Step 6

Now click on “Run“ and the program will be executed in a DOS-window.

vhb-lecture: Programming in C++ - Part 1 Script

Prof. Dr. Herbert Fischer Page: 6 Status: 30 April 2018 File: skript_cpp1_2017_V9

Step 7

Save the file (Save All files) and close the program.

Now you have probably implemented your first C++ program successfully.

Congratulations!

1.2.1 Simple output program

Let's have a look at out program again. Now insert the following lines:

cout << "Hello C++-friends!";
 cout << endl;
 cout << "How are you?" << endl;

#include <cstdlib>
#include <iostream>

using namespace std;

int main(int argc, char *argv[])
{
 cout << "Hello C++-friends!";
 cout << endl;
 cout << "How are you?" << endl;

 system("pause");
 return 0;
}

If you now click on “Build & Run“, the following output will appear in the console window:

Hello C++-friends!
How are you?
Press any key to continue...

vhb-lecture: Programming in C++ - Part 1 Script

Prof. Dr. Herbert Fischer Page: 7 Status: 30 April 2018 File: skript_cpp1_2017_V9

To print text on the screen, we need a C++ class called iostream. A brief description of this class
would therefore be appropriate here. You probably do not know what classes are, but there is no
need to worry about that. The iostream class uses streams to perform basic input and output oper-
ations – for example, printing text on the screen or reading user input operations.

Transfer to the Text that is to be End of statement
output stream printed on screen (also known as semicolon)

 cout<< ”Hello C++-friends!“ ;

To access the standard C++ output stream, use the keyword cout. For console applications, the
standard output by default is the console or the screen. The iostream class uses special operators
to insert the data into the stream. The << transfer operator inserts the data that follows into the
stream. In order to print text on the console, for example, you would enter the following: cout <<
“Do something!”;
With this, you tell your program to insert the text “Do something” into the standard output stream.
Please make sure that the text is enclosed in quotation marks and that the code line ends with a
semicolon. When the program line is executed, the text will appear on your screen.

Please note: cout is only used in console applications.

1.2.3 Header files

Before you can use cout, you must first tell the compiler where to find the description (called decla-
ration) of the iostream class in which cout is located. The iostream class is declared in the
IOSTREAM file. This file is also called header file.
Use the #include directive to tell the compiler that it needs to search for the iostream class declara-
tion in IOSTREAM: The #include directive includes frequently used functions into the source code
and makes them usable within the program.

#include <iostream>

If you forgot to include the corresponding header file of a class or function into your program, you
will be notified of a compiler error. The compiler error message could, for example, be as follows:
Undefined symbol 'cout'.
If you get this message, you should immediately check whether you have included all the headers
required for your program.

using namespace std;

Specifies the namespace in which all library elements are declared in C++.

Note:
The first line #include <cstdlib> is only used to include system statements like
system("pause"); and system("cls“); and can be omitted if these statements are not used.

vhb-lecture: Programming in C++ - Part 1 Script

Prof. Dr. Herbert Fischer Page: 8 Status: 30 April 2018 File: skript_cpp1_2017_V9

1.2.4 Libraries

In C/C++ there are libraries that contain different classes and functions. The function libraries partly
originate from the programming language C. The big advantage of C and C++ is the standardiza-
tion of the libraries. The C++ standard library provides the following components as an extensible
framework: strings, containers, algorithms, complex numbers, input/output and much more. The
namespace std contains all data types, classes and functions.

The functions from the library files required for the program are already bound to it during the link-
ing phase. The use of libraries is done in two steps. First, the header file must be included into the
source code file using the #include pre-processor command. In the second step, the linker gets to
know the actual library files, for example <string>.

Examples of the most important libraries in C++:

<iostream> Input/Output
<string> Strings of characters
<cstdlib> Help functions
<cmath> Mathematical functions
<ctime> Date und time
<random> Random numbers

A list of other libraries can be found on the following website:
http://www.cplusplus.com/reference/

STL – Standard Template Library

STL stands for Standard Template Library. STL is a collection of template classes and provides a
container. A container combines data of the same data type in a particular structure. The simplest
form of a container is an array (see Section 4.1). The STL provides functionalities for these con-
tainers, such as search and sort functions or insert and delete operations.

vhb-lecture: Programming in C++ - Part 1 Script

Prof. Dr. Herbert Fischer Page: 9 Status: 30 April 2018 File: skript_cpp1_2017_V9

1.2.5 endl;

The iostream class contains special manipulators that can be used to control the streams. The only
manipulator we want to work with at the moment is endl; (end line). It is used to insert a new line
into the output stream. We us endl to insert a new line after we have printed text on the screen.
Please note that the last character of endl is an l and not a 1.
endl can be appended to the end of a cout statement, or, with cout, in a separate line. You can
also write several endl one after the other in order to output several blank lines. As an alternative,
you can also write \n into the string to create a new line.

 cout << ”Hello C++-friends!“ << endl;

or: cout << ”Hello C++- friends!“;
 cout << endl;
or: cout<< ”Hello C++- friends!\n“;

1.2.6 main function

The main function (main program) is where a program starts its execution. After processing all
statements within the curly brackets, the program is terminated.

The skeleton program in Code::Blocks is as follows:

int main(int argc, char *argv[])

However, it is sufficient to write:

int main()

1.2.7 Brackets und whitespace characters

The curly brackets in the program are noticeable. In C++, a code block begins with an opening
curly bracket { and ends with a closing curly bracket }. The brackets are used to mark the begin-
nings and the ends of code blocks of loops, functions, if statements, and so on. Our program con-
tains one set of brackets only, as it is a very simple program.

In C++, whitespace characters are simply ignored. In most cases it is completely irrelevant where
you insert blanks or new lines. You can of course not use whitespaces within keywords or variable
names, but otherwise you are completely free to use them.

For example, the following source codes are fully equivalent:

int main()
{
 cout << "Hello World!";
}

equals

 int main(){cout<<"Hello World!";}

vhb-lecture: Programming in C++ - Part 1 Script

Prof. Dr. Herbert Fischer Page: 10 Status: 30 April 2018 File: skript_cpp1_2017_V9

1.2.8 Comments

#include <iostream>
#include <cstdlib>

using namespace std; // This is a comment

int main()
{
 cout << ”Hallo C++ friends!“; // This is another comment
 system(“pause”);
}

After the characters //, you can enter single-line comments into your source code. Comment lines
are used to document your program.

Multi-line comments can also be written as follows:

/* Comment
.....

*/

1.2.9 system("pause");

The C library provides a system function called system("pause");. It is used to make the screen or
console wait for a key press. After the keyboard input, the console window closes. This function
varies depending on the compiler. The Visual C++ compiler allows to omit system("pause");. Re-
turn EXIT_SUCCESS; can also be omitted or replaced by return 0;.

Task: Write a program that prints your name and address on the screen as follows:

Moritz Mustermann
Am Stadtplatz 1

94469 Deggendorf

The window is supposed to close after pressing a key. Comment on each line.

Solution:

#include <iostream> // Includes iostream header file
#include <cstdlib> // Includes cstdlib header file
using namespace std; // Namespace

int main() // Namespace
{ // Beginning of the program
 cout<<"Moritz Mustermann"<<endl; // Prints out text on screen with a line break
 cout<<"Am Stadtplatz 1"<<endl; // Prints out text on screen with a line break
 cout<<endl; // Blank line
 cout<<"94469 Deggendorf"<<endl; // Prints out text on screen with a line break

system("pause"); // Closes window after keyboard input
} // End of the program

1.2.10 system("cls");

The system("cls"); command fully deletes the screen output. The cursor is then located at the top
left at the beginning of the command line.

