TECHNISCHE HOCHSCHULE DEGGENDORF		Matriculation no.:	
		Seat no.:	
Faculty AI		Points:	Grade:
Course:	Autonome Robotik	Allowed resources:	open book incl. in- ternet
Degree program:	KI-B-WS2019	Duration:	90 min.
Examiner:	Gökçe Aydos	Date:	04.02.2021
Semester:	WS 20/21	Time:	11:30
Exam type:	schr. P. 90 min	# pages excl. cover	3

- Write your matriculation number and your seat number on every page
- The number of points should correspond the max. number of minutes that you should spend for this problem, e.g, 2 points ≈ 2 minutes
- Littler answer box size means less words expected. Be succinct.

Page	Points	Bonus Points	Score
1	9	0	
2	7	0	
3	2	0	
Total:	18	0	

This exam has 4 questions, for a total of 18 points and 0 bonus points.

Please include your calculation steps and thoughts where applicable. Your professor wants to understand and check how you came to your conclusion.

- 1. You are designing a cheap, autonomously driving robot which should help you to clean you floor to save you some precious time. The robot should not damage your precious furniture by colliding with them.
 - (a) (2 points) Which of the following components would be absolutely necessary?

Yes or No:

___ bumpers

____ GPS

____ inertial measurement unit

- ____ motors
- (b) (4 points) Give for every component the reason in a single sentence why this component would be absolutely necessary or not.

- 2. Think about holonomic locomotion
 - (a) (1 point) Which of the following vehicles is holonomic?
 - train on a track
 - O lawnmower on a garden
 - O car on a flat road
 - O differentiallu driven vacuum cleaner robot on a floor
 - (b) (2 points) Think about the non-holonomic vehicles in the previous choices. Which disadvantage do they have regarding locomotion? Explain using an example in a single sentence.

3. (5 points) Complete the following function which takes the four components x, y, z, w of a quaternion and converts them to Euler angles. Try to use a library.

```
def quaternion2euler(x, y, z, w):
# returns rotation_around_x, rotation_around_y, rotation_around_z
return ### YOUR CODE HERE
```

euler = quaternion2euler(0, 0, 0, 1)

Write your code here:

- 4. For which purpose you use the following ROS concepts on Turtlebot3? Give one example for each concept.
 - (a) (1 point) topic

(c) (1 point) service

(d) (1 point) node