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GUEST EDITORIAL

Twenty Statistical Errors Even YOU Can Find in Biomedical Research Articles

Tom Lang

Tom Lang Communications, Murphys, Ca, USA

“Critical reviewers of the biomedical literature
have consistently found that about half the articles
that used statistical methods did so incorrectly.” (1)

“Good research deserves to be presented well,
and good presentation is as much a part of the re-
search as the collection and analysis of the data. We
recognize good writing when we see it; let us also
recognize that science has the right to be written
well.” (2)

Statistical probability was first discussed in the
medical literature in the 1930s (3). Since then, re-
searchers in several fields of medicine have found
high rates of statistical errors in large numbers of sci-
entific articles, even in the best journals (4-7). The
problem of poor statistical reporting is, in fact, long-
standing, widespread, potentially serious, and not
well known, despite the fact that most errors concern
basic statistical concepts and can be easily avoided by
following a few guidelines (8).

The problem of poor statistical reporting has re-
ceived more attention with the growth of the evi-
dence-based medicine movement. Evidence-based
medicine is literature-based medicine and depends
on the quality of published research. As a result, sev-
eral groups have proposed reporting guidelines for
different types of trials (9-11), and a comprehensive
set of guidelines for reporting statistics in medicine
has been compiled from an extensive review of the
literature (12).

Here, I describe 20 common statistical reporting
guidelines that can be followed by authors, editors,
and reviewers who know little about statistical analy-
sis. These guidelines are but the tip of the iceberg:
readers wanting to know more about the iceberg
should consult more detailed texts (12), as well as the
references cited here. To keep the tension mounting
in an often dull subject, the guidelines are presented
in order of increasing importance.

Error #1: Reporting measurements with
unnecessary precision

Most of us understand numbers with one or two
significant digits more quickly and easily than num-
bers with three or more digits. Thus, rounding num-
bers to two significant digits improves communica-
tion (13). For instance, in the sentences below, the fi-
nal population size is about three times the initial
population size for both the women and the men, but
this fact is only apparent after rounding:

– The number of women rose from 29,942 to
94,347 and the number of men rose from 13,410 to
36,051.

– The number of women rose from 29,900 to
94,300 and the number of men rose from 13,400 to
36,000.

– The number of women rose from about
30,000 to 94,000 and the number of men rose from
about 13,000 to 36,000.

Many numbers do not need to be reported with
full precision. If a patient weighs 60 kg, reporting the
weight as 60.18 kg adds only confusion, even if the
measurement was that precise. For the same reason,
the smallest P value that need be reported is
P<0.001.

Error #2: Dividing continuous data into
ordinal categories without explaining why or
how

To simplify statistical analyses, continuous data,
such as height measured in centimeters, are often sep-
arated into two or more ordinal categories, such as
short, normal, and tall. Reducing the level of mea-
surement in this way also reduces the precision of the
measurements, however, as well as reducing the vari-
ability in the data. Authors should explain why they
chose to lose this precision. In addition, they should
explain how the boundaries of the ordinal categories
were determined, to avoid the appearance of bias
(12). In some cases, the boundaries (or “cut points”)
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that define the categories can be chosen to favor
certain results (Fig. 1).

Error #3: Reporting group means for paired
data without reporting within-pair changes

Data taken from the same patient are said to be
“paired.” In a group of patients with data recorded at
two time points, differences can occur between the
group means over time, as well between each individ-
ual’s measurements over time. However, changes in
the individuals’ measurements may be hidden by re-
porting only the group means (Fig. 2). Unless the indi-
vidual data are reported, readers may not know about
conflicts between the two measures. The results in
Figure 2, for example, can be reported as a mean de-
crease from time 1 to time 2 or as an increase in two
of three patients. Both results are technically correct,
but reporting only one can be misleading.

Error #4: Using descriptive statistics
incorrectly

Two of the most common descriptive statistics
for continuous data are the mean and standard devia-
tion. However, these statistics correctly describe only
a “normal” or “Gaussian” distribution of values. By
definition, about 68% of the values of a normal distri-
bution are within plus or minus 1 standard deviation
of the mean, about 95% are within plus or minus 2
standard deviations, and about 99% are within plus or
minus 3 standard deviations. In markedly non-normal
distributions, these relationships are no longer true,
so the mean and standard deviation do not communi-

cate the shape of the distribution well. Instead, other
measures, such as the median (the 50th percentile:
the value dividing the data into an upper and a lower
half) and range (usually reported by giving the mini-
mum and maximum values) or interquartile range
(usually reported by giving the 25th and the 75th per-
centiles) are recommended (14).

Although the mean and standard deviation can
be calculated from as few as two data points, these
statistics may not describe small samples well. In ad-
dition, most biological data are not normally distrib-
uted (15). For these reasons, the median and range or
interquartile range should probably be far more com-
mon in the medical literature than the mean and
standard deviation.

Error #5: Using the standard error of the
mean (SEM) as a descriptive statistic or as a
measure of precision for an estimate

The mean and standard deviation describe the
center and variability of a normal distribution of a
characteristic for a sample. The mean and standard
error of the mean (SEM), however, are an estimate
(the mean) and a measure of its precision (the SEM) for
a characteristic of a population. However, the SEM is
always smaller than the standard deviation, so it is
sometimes reported instead of the standard deviation
to make the measurements look more precise (16). Al-
though the SEM is a measure of precision for an esti-
mate (1 SEM on either side of the mean is essentially a
68% confidence interval), the preferred measure of
precision in medicine is the 95% confidence interval
(17). Thus, the mean and SEM can sometimes refer to
a sample and sometimes to a population. To avoid
confusion, the mean and standard deviation are the
preferred summary statistics for (normally distributed)
data, and the mean and 95% confidence interval are
preferred for reporting an estimate and its measure of
precision.

For example, if the mean weight of a sample of
100 men is 72 kg and the SD is 8 kg, then (assuming a
normal distribution), about two-thirds of the men
(68%) are expected to weigh between 64 kg and 80
kg. Here, the mean and SD are used correctly to de-
scribe this distribution of weights.

However, the mean weight of the sample, 72 kg,
is also the best estimate of the mean weight of all men
in the population from which the sample was drawn.
Using the formula SEM=SD/�n, where SD=8 kg and
n=100, the SEM is calculated to be 0.8. The interpre-
tation here is that if similar (random) samples were re-
peatedly drawn from the same population of men,
about 68% of these samples would be expected to
have mean values between 71.2 kg and 72.8 kg (the
range of values between 1 SEM above and below the
estimated mean).

The preferred expression for an estimate and its
precision is the mean and the 95% confidence inter-
val (the range of values about 2 SEMs above and be-
low the mean). In the example here, the expression
would be “The mean value was 72 mg (95% CI =
70.4 to 73.6 mg),” meaning that if similar (random)
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Figure 1. Authors should state why and how continuous
data were separated into ordinal categories to avoid possi-
ble bias. A. For this distribution, these categories appear to
have been reasonably created. B. The rationale for creating
these categories should be explained.
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Figure 2. Paired data should be reported together so that the
changes within each patient, as well as in group means, can
be evaluated. Here, the results can be reported as a mean
drop of 1.6 units or that units increased in 2 of 3 patients.



samples were repeatedly drawn from the same popu-
lation of men, about 95% of these samples would be
expected to have mean values between 70.4 mg and
73.6 mg.

Error #6: Reporting only P values for results

P values are often misinterpreted (18). Even
when interpreted correctly, however, they have some
limitations. For main results, report the absolute dif-
ference between groups (relative or percent differ-
ences can be misleading) and the 95% confidence in-
terval for the difference, instead of, or in addition to, P
values. The sentences below go from poor to good re-
porting:

– “The effect of the drug was statistically signifi-
cant.” This sentence does not indicate the size of the
effect, whether the effect is clinically important, or
how statistically significant the effect is. Some readers
would interpret “statistically significant” in this case
to mean that the study supports the use of the drug.

– “The effect of the drug on lowering diastolic
blood pressure was statistically significant (P< 0.05)”
Here, the size of the drop is not given, so its clinical
importance is not known. Also, P could be 0.049; sta-
tistically significant (at the 0.05 level) but so close to
0.05 that it should probably be interpreted similarly to
a P value of, say, 0.51, which is not statistically signifi-
cant. The use of an arbitrary cut point, such as 0.05, to
distinguish between “significant” and “non signifi-
cant” results is one of the problems of interpreting P
values.

– “The mean diastolic blood pressure of the
treatment group dropped from 110 to 92 mm Hg (P =
0.02).” This sentence is perhaps the most typical. The
pre- and posttest values are given, but not the differ-
ence. The mean drop – the 18-mm Hg difference – is
statistically significant, but it is also an estimate, and
without a 95% confidence interval, the precision (and
therefore the usefulness) of the estimate cannot be de-
termined.

– “The drug lowered diastolic blood pressure
by a mean of 18 mm Hg, from 110 to 92 mm Hg (95%
CI=2 to 34 mm Hg; P = 0.02).” The confidence inter-
val indicates that if the drug were to be tested on 100
samples similar to the one reported, the average drop
in blood pressure in 95 of those 100 samples would
probably range between 2 and 34 mm Hg. A drop of
only 2 mm Hg is not clinically important, but a drop
of 34 mm Hg is. So, although the mean drop in blood
pressures in this study was statistically significant, the
expected difference in blood pressures in other stud-
ies may not always be clinically important; that is, the
study is inconclusive.

When a study produces a confidence interval in
which all the values are clinically important, the inter-
vention is much more likely to be clinically effective.
If none of the values in the interval are clinically im-
portant, the intervention is likely to be ineffective. If
only some of the values are clinically important, the
study probably did not enroll enough patients.

Error #7: Not confirming that the data met
the assumptions of the statistical tests used to
analyze them

There are hundreds of statistical tests, and several
may be appropriate for a given analysis. However,
tests may not give accurate results if their assumptions
are not met (19). For this reason, both the name of the
test and a statement that its assumptions were met
should be included in reporting every statistical anal-
ysis. For example: “The data were approximately nor-
mally distributed and thus did not violate the assump-
tions of the t test.”

The most common problems are:

– Using parametric tests when the data are not
normally distributed (skewed). In particular, when
comparing two groups, Student’s t test is often used
when the Wilcoxon rank-sum test (or another non-
parametric test) is more appropriate.

– Using tests for independent samples on paired
samples, which require tests for paired data. Again,
Student’s t test is often used when a paired t test is re-
quired.

Error #8: Using linear regression analysis
without establishing that the relationship is,
in fact, linear

As stated in Guideline #7, every scientific article
that includes a statistical analysis should contain a
sentence confirming that the assumptions on which
the analysis is based were met (12). This confirmation
is especially important in linear regression analysis,
which assumes that the relationship between a re-
sponse and an explanatory variable is linear. If this as-
sumption is not met, the results of the analysis may be
incorrect.

The assumption of linearity may be tested by
graphing the “residuals”: the difference between each
data point and the regression line (Fig. 3). If this graph
is flat and close to zero (Fig. 4A), the relationship is
linear. If the graph shows any other pattern, the rela-
tionship is not linear (Fig. 4B, 4C, and 4D.) Testing the
assumption of linearity is important because simply
looking at graphed data can be misleading (Fig. 5).
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Figure 3. A residual is the distance between an actual, ob-
served value and the value predicted by the regression line.



Error #9: Not accounting for all data and all
patients

Missing data is a common but irritating reporting
problem made worse by the thought that the author is
careless, lazy, or both (20). Missing data raise issues
about:

– the nature of the missing data. Were extreme
values not included in the analysis? Were data lost in
a lab accident? Were data ignored because they did
not support the hypothesis?

– the generalizability of the presented data. Is
the range of values really the range? Is the drop-out
rate really that low?

– the quality of entire study. If the totals don’t
match in the published article, how careful was the
author during the rest of the research?

One of the most effective ways to account for all
patients in a clinical trial is a flow chart or schematic
summary (Fig. 6) (9,12,21). Such a visual summary
can account for all patients at each stage of the trial,
efficiently summarize the study design, and indicate
the probable denominators for proportions, percent-
ages, and rates. Such a graphic is recommended by
the CONSORT Statement for reporting randomized
trials (9).

Error #10: Not reporting whether or how
adjustments were made for multiple
hypothesis tests

Most studies report several P values, which in-
creases the risk of making a type I error: such as saying
that a treatment is effective when chance is a more
likely explanation for the results (22). For example,
comparing each of six groups to all the others requires
15 “pair-wise” statistical tests – 15 P values. Without
adjusting for these multiple tests, the chance of mak-
ing a type I error rises from 5 times in 100 (the typical
alpha level of 0.05) to 55 times in 100 (an alpha of
0.55).

The multiple testing problem may be encoun-
tered when (12):

– establishing group equivalence by testing
each of several baseline characteristics for differences
between groups (hoping to find none);

– performing multiple pair-wise comparisons,
which occurs when three or more groups of data are
compared two at a time in separate analyses;

– testing multiple endpoints that are influenced
by the same set of explanatory variables;

– performing secondary analyses of relation-
ships observed during the study but not identified in
the original study design;

– performing subgroup analyses not planned in
the original study;

– performing interim analyses of accumulating
data (one endpoint measured at several different
times).

– comparing groups at multiple time points
with a series of individual group comparisons.
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Figure 5. The appearance of linearity in a set of data can be
deceptive. Here, a relationship that appears to be linear (A)
is obviously not, as indicated by the graph of residuals (B).
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Figure 6. A flow chart of a randomized clinical trial with
two treatment arms, showing the disposition of all patients
at each stage of the study.

A B

C D

x

x x

x

0 0

00

ee

e e

Figure 4. A. When the graphed residuals remain close to
zero over the range of values, the regression line accurately
represents the linear relationship of the data. Any other pat-
tern (B, C, and D) indicates that the relationship is not lin-
ear, which means that linear regression analysis should not
be used.



Multiple testing is often desirable, and explor-
atory analyses should be reported as exploratory.
“Data dredging,” however – undisclosed analyses in-
volving computing many P values to find something
that is statistically significant (and therefore worth re-
porting) – is considered to be poor research.

Error #11: Unnecessarily reporting baseline
statistical comparisons in randomized trials

In a true randomized trial, each patient has a
known and usually equal probability of being as-
signed to either the treatment or the control group.
Thus, any differences between groups at baseline are,
by definition, the result of chance. Therefore, signifi-
cant differences in baseline data (Table 1) do not indi-
cate bias (as they might in other research designs) (9).
Such comparisons may indicate statistical imbalances
between the groups that may need to be taken into ac-
count later in the analysis, but the P values do not
need to be reported (9).

Assuming that alpha is set at 0.05, of every 100
baseline comparisons in randomized trials, 5 should
be statistically significant, just by chance. However,
one study found that among 1,076 baseline compari-
sons in 125 trials, only 2% were significant at the 0.05
level (23).

Error #12: Not defining “normal” or
“abnormal” when reporting diagnostic test
results

The importance of either a positive or a negative
diagnostic test result depends on how “normal” and
“abnormal” are defined. In fact, “normal” has at least
six definitions in medicine (24):

– A diagnostic definition of normal is based on
the range of measurements over which the disease is
absent and beyond which it is likely to be present.
Such a definition of normal is desirable because it is
clinically useful.

– A therapeutic definition of normal is based on
the range of measurements over which a therapy is
not indicated and beyond which it is beneficial.
Again, this definition is clinically useful.

Other definitions of normal are perhaps less use-
ful for patient care, although they are unfortunately
common:

– A risk factor definition of normal includes the
range of measurements over which the risk of disease
is not increased and beyond which the risk is in-
creased. This definition assumes that altering the risk
factor alters the actual risk of disease. For example,

with rare exceptions, high serum cholesterol is not it-
self dangerous; only the associated increased risk of
heart disease makes a high level “abnormal.”

– A statistical definition of normal is based on
measurements taken from a disease-free population.
This definition usually assumes that the test results are
“normally distributed”; that they form a “bell-shaped”
curve. The normal range is the range of measure-
ments that includes two standard deviations above
and below the mean; that is, the range that includes
the central 95% of all the measurements. However,
the highest 2.5% and the lowest 2.5% of the scores –
the “abnormal” scores – have no clinical meaning;
they are simply uncommon. Unfortunately, many test
results are not normally distributed.

– A percentile definition of normal expresses
the normal range as the lower (or upper) percentage
of the total range. For example, any value in the
lower, say, 95% of all test results may be defined as
“normal,” and only the upper 5% may be defined as
“abnormal.” Again, this definition is based on the fre-
quency of values and may have no clinical meaning.

– A social definition of normal is based on pop-
ular beliefs about what is normal. Desirable weight or
the ability of a child to walk by a certain age, for ex-
ample, often have social definitions of “normal” that
may or may not be medically important.

Error #13: Not explaining how uncertain
(equivocal) diagnostic test results were
treated when calculating the test’s
characteristics (such as sensitivity and
specificity)

Not all diagnostic tests give clear positive or neg-
ative results. Perhaps not all of the barium dye was
taken; perhaps the bronchoscopy neither ruled out
nor confirmed the diagnosis; perhaps observers could
not agree on the interpretation of clinical signs. Re-
porting the number and proportion of non-positive
and non-negative results is important because such
results affect the clinical usefulness of the test.

Uncertain test results may be one of three types
(25):

– Intermediate results are those that fall be-
tween a negative result and a positive result. In a tis-
sue test based on the presence of cells that stain blue,
“bluish” cells that are neither unstained nor the re-
quired shade of blue might be considered intermedi-
ate results.

– Indeterminate results are results that indicate
neither a positive nor a negative finding. For example,
responses on a psychological test may not determine
whether the respondent is or is not alcohol-depend-
ent.

– Uninterpretable results are produced when a
test is not conducted according to specified perfor-
mance standards. Glucose levels from patients who
did not fast overnight may be uninterpretable, for ex-
ample.

How such results were counted when calculat-
ing sensitivity and specificity should be reported. Test
characteristics will vary, depending on whether the
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Table 1. Statistical baseline comparisons in a randomized
trial. By chance, the groups differ in median albumin scores
(P=0.03); the difference does not indicate selection bias.
Here, P values need not be reported for this reason

Variable
Control
(n=43)

Treatment
(n=51) Difference P

Median age (years) 85 84 1 0.88
Men (n, %) 21 (49) 21 (51) 3% 0.99
Median albumin (g/L) 30.0 33.0 3.0 g/L 0.03
Diabetes (n,%) 11 (26) 8 (20) 6% 0.83



results are counted as positive or negative or were not
counted at all, which is often the case. The standard
2×2 table for computing diagnostic sensitivity and
specificity does not include rows and columns for un-
certain results (Table 2). Even a highly sensitive or
specific test may be of little value if the results are
uncertain much of the time.

Error #14: Using figures and tables only to
“store” data, rather than to assist readers

Tables and figures have great value in storing, an-
alyzing, and interpreting data. In scientific presenta-
tions, however, they should be used to communicate
information, not simply to “store” data (26). As a re-
sult, published tables and figures may differ from
those created to record data or to analyze the results.
For example, a table presenting data for 3 variables
may take any of 8 forms (Table 3). Because numbers
are most easily compared side-by-side, the most ap-
propriate form in Table 3 is the one in which the vari-
ables to be compared are side-by-side. That is, by
putting the variables to be compared side-by-side, we
encourage readers to make a specific comparison.

The table and images in Figure 7 show the same
data: the prevalence of a disease in nine areas. How-
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Form 1

Men Women

Age (years) US China US China

0-21
22-49
50+

Form 2

China US

Age (years) men women men women

0-21
22-49
50+

Form 3

0-21 years 22-49 years 50+ years

men women men women men women

US
China

Form 4

Men (age, years) Women (age, years)

0-21 22-49 50+ 0-21 22-49 50+

US
China

Form 5

0-21 years 22-49 years 50+ years

US China US China US China

Men
Women

Form 6

US (age, years) China (age, years)

0-21 22-49 50+ 0-21 22-49 50+

Men
Women

Table 3. A table for reporting 3 variables (nationality, sex, and age group) may take any of 8 forms:

Form 7

0-21 years 22-49 years 50+ years

Men:
US
China
Women:
US
China

Form 8

0-21 years 22-49 years 50+ years

US:
men
women
China:
men
women

Area Rate (%)

1

2

3

4

5

6

7

8

9

23

0

17

11

22

5

21

12

16

A. Prevalence, by area B. Prevalence, by area

Area

1

5

7

9

8

4

6

2

0 5 10 15 20

Rate (%)

C. Prevalence, by area

Dangerous

High

Moderate

Low

None

Figure 7. Tables and figures should be used to communicate information, not simply to store data. A. Tables are best for com-
municating or referencing precise numerical data. B. Dot charts are best for communicating general patterns and compari-
sons. C. Maps are best for communicating spatial relationships.

Table 2. Standard table for computing diagnostic test charac-
teristics*

Disease

Test result present absent Totals

Positive a b a + b
Negative c d c + d
Total a + c b + d a + b + c + d

*Sensitivity = a/a + c; specificity = d/b + d. Likelihood ratios can also be cal-
culated from the table. The table does not consider uncertain results, which of-
ten – and inappropriately – are ignored.



ever, the table is best used to communicate and to ref-
erence precise data; the dot chart, to communicate
how the areas compare with one another; and the
map, to communicate the spatial relationships be-
tween the areas and disease prevalence.

Error #15: Using a chart or graph in which
the visual message does not support the
message of the data on which it is based

We remember the visual message of an image
more than the message of the data on which it is
based (27). For this reason, the image should be ad-
justed until its message is the same as that of the data.
In the “lost zero” problem (Fig. 8A), column 1 appears
to be less than half as long as column 2. However, the
chart is misleading because the columns do not start
at zero: the zero has been “lost.” The more accurate
chart, showing the baseline value of zero (Fig. 8B),
shows that column 1 is really two-thirds as long as
column 2. To prevent this error, the Y axis should be
“broken” to indicate that the columns do not start at
zero (Fig. 8C).

In the “elastic scales” problem, one of the axes is
compressed or lengthened disproportionately with re-
spect to the other, which can distort the relationship
between the two axes (Fig. 9). Similarly, in the “dou-
ble scale” problem, unless the scale on the right has

some mathematical relationship with the scale on the
left, the relationship between two lines can be dis-
torted (Fig. 10).

Error #16: Confusing the “units of
observation” when reporting and interpreting
results

The “unit of observation” is what is actually be-
ing studied. Problems occur when the unit is some-
thing other than the patient. For example, in a study of
50 eyes, how many patients are involved? What does
a 50% success rate mean?

If the unit of observation is the heart attack, a
study of 18 heart attacks among 1,000 people has a
sample size of 18, not 1,000. The fact that 18 of 1,000
people had heart attacks may be important, but there
are still only 18 heart attacks to study.

If the outcome of a diagnostic test is a judgment,
a study of the test might require testing a sample of
judges, not simply a sample of test results to be
judged. If so, the number of judges involved would
constitute the sample size, rather than the number of
test results to be judged.

Error #17: Interpreting studies with
nonsignificant results and low statistical
power as “negative,” when they are, in fact,
inconclusive

Statistical power is the ability to detect a differ-
ence of a given size, if such a difference really exists
in the population of interest. In studies with low statis-
tical power, results that are not statistically significant
are not negative, they are inconclusive: “The absence
of proof is not proof of absence.” Unfortunately,
many studies reporting non-statistically significant
findings are “under-powered” and are therefore of lit-
tle value because they do not provide conclusive an-
swers (28).
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Figure 9. Uneven scales can visually distort relationships
among trends. Compressing the scale of the X axis (repre-
senting time in this example) makes changes seem more
sudden. Compressing the scale of the Y axis makes the
changes seem more gradual. Scales with equal intervals are
preferred.
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Figure 10. Charts with two scales, each for a different line of
data, can imply a false relationship between the lines, de-
pending on how the scales are presented. Lines A, B, and C
represent the same data, but their visual relationships de-
pend on how their respective scales are drawn. Here, Line
B seems to increase at half the rate of Line A, whereas Line
C seems to increase at a quarter of the rate. Unless the verti-
cal scales are mathematically related, the relationship be-
tween the lines can be distorted simply by changing one of
the scales.

A B C

4

6

8

10

4

6

8

10

0

2

4

6

8

10

0

1 2

1 2

1 2

Figure 8. A. Charts and graphs that do not begin at zero can
create misleading visual comparisons. B. Here, the actual
length of both columns can be compared accurately. C.
When space prohibits starting with zero as a baseline, the
axis should be “broken” to indicate that the baseline is not
zero.



In some situation, non-statistically significant
findings are desirable, as when groups in observa-
tional studies are compared with hypothesis tests (P
values) at baseline to establish that they are similar.
Such comparisons often have low power and there-
fore may not establish that the groups are, in fact,
similar.

Error #18: Not distinguishing between
“pragmatic” (effectiveness) and “explanatory”
(efficacy) studies when designing and
interpreting biomedical research

Explanatory or efficacy studies are done to un-
derstand a disease or therapeutic process. Such stud-
ies are best done under “ideal” or “laboratory” condi-
tions that allow tight control over patient selection,
treatment, and follow up. Such studies may provide
insight into biological mechanisms, but they may not
be generalizable to clinical practice, where the condi-
tions are not so tightly controlled. For example, a dou-
ble-masked explanatory study of a diagnostic test may
be appropriate for evaluating the scientific basis of the
test. However, in practice, doctors are not masked to
information about their patients, so the study may not
be realistic.

Pragmatic or effectiveness studies are performed
to guide decision-making. These studies are usually
conducted under “normal” conditions that reflect the
circumstances under which medical care is usually
provided. The results of such studies may be affected
by many, uncontrolled, factors, which limits their ex-
planatory power but that may enhance their applica-
tion in clinical practice. For example, patients in a
pragmatic trial are more likely to have a wide range of
personal and clinical characteristics than are patients
in an explanatory trial, who must usually meet strict
entrance criteria.

Many studies try to take both approaches and, as
a result, do neither well (29,30). The results of a study
should be interpreted in light of the nature of the
question it was designed to investigate (Table 4).

Error #19: Not reporting results in clinically
useful units

The reports below (31,32) all use accurate and
accepted outcome measures, but each leaves a differ-
ent impression of the effectiveness of the drug. Ef-
fort-to-yield measures, especially the number needed
to treat, are more clinically relevant and allow differ-
ent treatments to be compared on similar terms.

– Results expressed in absolute terms. In the
Helsinki study of hypercholesterolemic men, after 5
years, 84 of 2,030 patients on placebo (4.1%) had
heart attacks, whereas only 56 of 2,051 men treated
with gemfibrozil (2.7%) had heart attacks (P<0.02),
for an absolute risk reduction of 1.4% (4.1-2.7%=
1.4%).

– Results expressed in relative terms. In the Hel-
sinki study of hypercholesterolemic men, after 5
years, 4.1% of the men treated with placebo had heart
attacks, whereas only 2.7% treated with gemfibrozil
had heart attacks. The difference, 1.4%, represents a
34% relative risk reduction in the incidence of heart
attack in the gemfibrozil-treated group (1.4%/4.1%
=34%).

– Results expressed in an effort-to-yield mea-
sure, the number needed to treat. The results of the
Helsinki study of 4,081 hypercholesterolemic men
indicate that 71 men would need to be treated for 5
years to prevent a single heart attack.

– Results expressed in another effort-to-yield
measure. In the Helsinki study of 4,081 hypercholes-
terolemic men, after 5 years, the results indicate that
about 200,000 doses of gemfibrozil were taken for
each heart attack prevented.

– Results expressed as total cohort mortality
rates. In the Helsinki study, total mortality from car-
diac events was 6 in the gemfibrozil group and 10 in
the control group, for an absolute risk reduction of
0.2%, a relative risk reduction of 40%, and the need
to treat 2,460 men for 1 year to prevent 1 death from
heart attack.

Error #20: Confusing statistical significance
with clinical importance

In statistics, small differences between large
groups can be statistically significant but clinically
meaningless (12,33). In a study of the time-to-failure
for two types of pacemaker leads, a mean difference
of 0.25 months over 5 years among thousands of
leads is not apt to be clinically important, even if such
a difference would have occurred by chance less than
1 time 1,000 (p<0.001).

It is also true that large differences between small
groups can be clinically important but not statistically
significant. In a small study of patients with a terminal
condition, if even one patient in the treatment group
survives, the survival is clinically important, whether
or not the survival rate is statistically different from
that of the control group.
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Table 4. Differences between explanatory and pragmatic
studies in studies of zinc lozenges for treating the common
cold. The pragmatic study was designed to determine
whether zinc lozenges would reduce the number and dura-
tion of cold symptoms in outpatients and was conducted un-
der conditions faced by consumers of the lozenges. The ex-
planatory study was designed to determine whether zinc is
an effective antiviral agent and was conducted under much
tighter experimental conditions

Variable Explanatory Pragmatic

Diagnosis positive Rhinovirus
culture

3 of 10 symptoms

Evidence of efficacy
(outcomes)

weight of nasal
mucus, tissue counts

reduced number and
duration of symptoms

Setting in-patient out-patient

Intervention controlled by
researcher

controlled by patient

Design masked and
placebo-controlled

masked and
placebo-controlled

Focus zinc as an antiviral
agent

zinc as a treatment for
colds



Conclusion

The real solution to poor statistical reporting will
come when authors learn more about research design
and statistics; when statisticians improve their ability
to communicate statistics to authors, editors, and
readers; when researchers begin to involve statisti-
cians at the beginning of research, not at its end;
when manuscript editors begin to understand and to
apply statistical reporting guidelines (12,18,19,34-
40); when more journals are able to screen more care-
fully more articles containing statistical analyses; and
when readers learn more about how to interpret statis-
tics and begin to expect, if not demand, adequate
statistical reporting.
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