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Abstract

The R package microsynth has been developed for implementation of the synthetic
control methodology for comparative case studies involving micro- or meso-level data.
The methodology implemented within microsynth is designed to assess the efficacy of a
treatment or intervention within a well-defined geographic region that is itself a composite
of several smaller regions (where data are available at the more granular level for compar-
ison regions as well). The effect of the intervention on one or more time-varying outcomes
is evaluated by determining a synthetic control region that resembles the treatment region
across pre-intervention values of the outcome(s) and time-invariant covariates and that is
a weighted composite of many untreated comparison regions. The microsynth procedure
includes functionality that enables its user to (1) calculate weights for synthetic control,
(2) tabulate results for statistical inferences, and (3) create time series plots of outcomes
for treatment and synthetic control. In this article, microsynth is described in detail and
its application is illustrated using data from a drug market intervention in Seattle, WA.

Keywords: synthetic control methods, micro-level, causal inference, Synth, program evalua-
tion.

1. Introduction
Synthetic controls are a generalization of the difference-in-differences approach (Abadie and
Gardeazabal 2003; Abadie, Diamond, and Hainmueller 2010, 2015). Difference-in-differences
methods often require identification of one or more control cases (against which the treatment
will be compared) and rely upon the plausibility that parallel trends affect the treatment
and control after the intervention. The synthetic control method (SCM) offers a rigorous
alternative wherein a comparison case is identified by constructing a “synthetic” control unit
that represents a weighted combination of many untreated cases. Weights are calculated in
order to maximize the similarity between the synthetic control and the treatment unit in
terms of specified “matching” variables.
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Generally, synthetic controls have been applied in the context of a single treatment case with a
limited number (e.g., several dozens) of untreated cases for comparison. Such circumstances
typically arise with data at a highly aggregated (e.g., macro-) level. The Synth package
(Abadie, Diamond, and Hainmueller 2011) was developed for R and designed for this type of
application. However, the relative dearth of treatment and comparison cases in such settings
complicates efforts to (a) develop a synthetic control that exactly matches the treatment case,
(b) precisely estimate the effect of treatment, (c) gauge the significance of that effect, and
(d) jointly incorporate multiple outcome variables.
To address those limitations, the synthetic controls framework has been extended to settings
involving disaggregated, micro-level data (Robbins, Saunders, and Kilmer 2017; Saunders,
Robbins, and Ober 2017). This package was developed for implementation of SCM machinery
in those settings, as Synth cannot be applied with data that have more than one treated case.
Therefore, microsynth offers several new advantages and functionalities:

1. With the advantage of a large number of smaller-scale observations, microsynth is often
better able to calculate weights that provide exact matches between treatment and
synthetic control units across constraints based on time-invariant covariates and pre-
intervention values of time-variant outcome variables—calibration (Särndal 2007) is
used to calculate weights in such circumstances. This bolsters the conceptual framework
behind the SCM. To facilitate the possibility that an exact match between the treatment
and synthetic control groups may not be feasible across specified constraints, microsynth
includes checks for feasibility and additional machinery that searches for the closest
possible match when an exact match is not feasible.

2. The microsynth package also includes multiple modes for making statistical inferences
with regards to the effect of the intervention. The presence of multiple treated areas en-
ables the analyst to assess uncertainty in the estimate of the intervention effect through
survey methods including linearization and a jackknife. Furthermore, granular data
permit inference through permutations, which is a generalization the placebo method
described in Abadie and Gardeazabal (2003); Abadie et al. (2010, 2015). Specifically,
microsynth can generate a myriad of permuted treatment units using random permuta-
tions of the data units. This allows estimated effects from the actual treatment unit to
be compared to effects for the permuted treatment units, which facilitates inferences.

3. For each of the three methods of inference, microsynth gives confidence intervals for
the effect of treatment, which is enumerated as a percent reduction in outcome, and
p values are provided that assess the statistical significance of the estimated treatment
effect. Since the jackknife and permutation methods can be computationally intensive,
microsynth enables the user to specify whether or not each should be run. Since gran-
ular data afford the analyst the capability to study multiple outcomes simultaneously,
microsynth can also calculate an omnibus statistic for each inference method to jointly
assess the statistical significance across multiple variables.

4. For any time variant outcome of interest, microsynth can be used to create time series
plots that compare outcome levels of treatment to synthetic control both before and
after the intervention. The sampling distribution of the effects from permuted treatment
region is included in the plots (if permutations are used) to help the user visualize the
statistical significance of the intervention effect. The user also has the option of creating
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an Excel (or CSV) file that contains results in the form of estimated intervention effects
for each outcome along with p values and confidence intervals.

5. The microsynth package includes parameters to assist users in finding feasible models
when a plethora of matching variables and a scarcity of data make the calculation of
satisfactory weights difficult. Users may call check.feas or use.backup to call on more
computationally-intensive methods to calculate weights. Alternately, difficult-to-match
variables may be passed to match.out.min/match.covar.min so as to seek weights that
deliver the best-possible but not necessarily exact match on those variables.

6. The microsynth package can also be deployed on the Synth-like case of a single treatment
with a limited number of untreated cases, although the relative dearth of data should
be expected to decrease matching performance and limit the usefulness of the features
discussed above.

7. Lastly, microsynth can be used to calculate propensity score-type weights in the vein of
Hainmueller (2012) for cross-sectional data. In this case, plots should not be generated,
but inferences can be tabulated using any of the three methods described earlier.

Most of the capabilities of microsynth can be executed through the function microsynth(),
which returns an object of the class ‘microsynth’, which contains weights, results, and the
data used for plotting. A separate function, plot_microsynth() (which uses a ‘microsynth’
object as input) is used to create plots. Package microsynth is available from the Comprehen-
sive R Archive Network (CRAN) at https://CRAN.R-project.org/package=microsynth.
The article continues as follows. Section 2 reviews the theory underpinning synthetic controls
as it pertains to this work, Section 3 describes the implementation of microsynth, and Section 4
provides several examples outlining the application of microsynth to data from a drug market
intervention in Seattle, Washington. We conclude with discussion points in Section 5.

2. SCM with micro- and meso-level data
Here, we outline SCMs for micro-level data as described within Robbins et al. (2017), and we
borrow the notation therein. Note that a bare-bones description of the theory that underpins
the methods is provided here – see Robbins et al. (2017) for more details, including an outline
of the relevant potential outcomes framework.
We assume there are data on J total cases (or units, regions, etc.), which are indexed so
that the first J0 are untreated and the final J − J0 are treated. In addition, there are I
time-varying outcomes measured across T total time periods (the first T0 of which are pre-
intervention and the last T−T0 of which are post-intervention), where Yitj is used to represent
the value of outcome i at time t for unit j. A general data generating mechanism is used for
Yitj (see Formula 8 in Robbins et al. 2017). Furthermore, there are L total time-invariant
(i.e., baseline) covariates where R`j denotes the value of covariate ` for unit j. (We recommend
that any time-varying covariates be included in the procedure as outcomes.)
A synthetic control group is calculated by assigning a weight to each non-treated case. These
weights are denoted wj for j ∈ (1, . . . , J0). The microsynth algorithm matches treatment and
synthetic control by calculating weights that satisfy three classes of constraints. First, the

https://CRAN.R-project.org/package=microsynth
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sum of the weights equals the number of cases in the treatment area. That is,

J0∑
j=1

wj = J − J0. (1)

Second, the aggregated (weighted) synthetic control matches the aggregated treatment area
across the covariates. Specifically,

J0∑
j=1

wjR`j =
J∑

j=J0+1
R`j for ` ∈ (1, . . . , L). (2)

Lastly, the synthetic control and treatment also match across all pre-intervention time points
of each outcome in that

J0∑
j=1

wjYitj =
J∑

j=J0+1
Yitj for all i ∈ (1, . . . , I) and t ∈ (1, . . . , T0). (3)

Note that there are 1 +L+ IT0 constraints that must be satisfied according to (1)–(3). If wj
for j ∈ (1, . . . , J0) meet these constraints, the cumulative treatment effect α̂i for outcome i,
is determined by first calculating the cumulative outcome value across all post-intervention
time periods and all treated units. The result is then subtracted from the corresponding value
for the synthetic control. That is, we calculate

α̂i =
T∑

t=T0+1

 J∑
j=J0+1

Yitj −
J0∑
j=1

wjYitj

 . (4)

Note that this is an aggregate analogue of an average treatment effect for the treated (ATT)
estimator (in the vein of Imbens 2004) of the treatment effect parameter outlined in Robbins
et al. (2017).
Techniques for statistical inference, as described in Section 3.3, are used to determine whether
or not α̂i is statistically different from zero for each outcome i. Section 3.3 also includes
discussion of an omnibus test which jointly assesses whether the estimated treatment effects
for all outcomes are non-zero. The raw value of α̂i is not helpful for interpreting the efficacy of
the intervention. Therefore, we examine the estimated intervention effect as a relative change
in percentage terms:

∆̂i = 100
T∑

t=T0+1

 J∑
j=J0+1

Yitj −
J0∑
j=1

wjYitj

 / T∑
t=T0+1

J0∑
j=1

wjYitj . (5)

The microsynth package can be applied within cross-sectional data (in which case T = 1) to
evaluate an intervention. In this case, only constraints (1) and (2) must be satisfied and the
treatment effect is estimated using

α̂i =
J∑

j=J0+1
Yij −

J0∑
j=1

wjYij ,
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where the time index has been suppressed. This effectively implements the entropy balancing
procedure of Hainmueller (2012). See Section 4.5 for an illustration of the use of microsynth
for entropy balancing in cross-sectional data.

3. Implementing microsynth
The bulk the functionality of microsynth is implemented within the microsynth() function.
This function performs each of the subroutines of the microsynth algorithm, which are divided
into two primary phases: (1) calculation of weights, and (2) plotting of treatment effects.
microsynth() is used to call each of these subroutines (though they can also be performed
separately by a modified microsynth() call); ergo, the function has a large number of inputs.
Time series plots are created with the function plot_microsynth().

3.1. Data statements

The microsynth() algorithm requires specification of the following inputs: data, idvar,
intvar, timevar. At the minimum, data is a TJ × (L+ I + 3) data array, i.e., a longitudinal
dataset in the tall format (one row per case per time period). Missing values are not permitted
in data (see Section 5 for discussion on this issue). Furthermore, idvar, intvar, and timevar
indicate column names of data that distinguish the case IDs, indicators of intervention cases,
and time period, respectively. The column specified by intvar should be binary in that any
data unit that has an entry of one for intvar at any time is considered to be in the treatment
group. If data is cross sectional (one row per ID), in which case microsynth will calculate
propensity score-type weights, timevar should not be specified.
The microsynth() function also has three inputs that are used to distinguish time points that
are relevant to intervention assessment: start.pre, end.pre, and end.post. Specifically,
start.pre is the earliest time point at which pre-intervention outcomes will be examined,
end.pre is the final time point of the pre-intervention period, and end.post is the last time
point when post-intervention outcomes will be considered. Note that end.pre is the last time
at which treatment and synthetic control will be matched to one another. All time points
following end.pre are considered to be post-intervention and the behavior of outcomes will
be compared between the treatment and synthetic control groups across those time periods.
If end.pre is not specified by the user, microsynth will begin the post-intervention period at
the time that corresponds to the first non-zero entry in the column indicated by intvar. In
order to evaluate outcomes across multiple follow-up periods, end.post can be an (ordered
increasing) vector of post-intervention time periods.

3.2. Creating weights

Fundamental to the calculation of weights within microsynth() is the specification of which
variables to include as constraints given by (2) and (3). The input match.covar, a vector of
variable names that indicate time-invariant columns of data (or a subset of such columns),
is used to specify the constraints in (2). Likewise, match.out is a vector of variables names
that indicate time-variant columns of data that define the constraints in (3). Specifically,
each pre-intervention time point of each variable in match.out is used to build a constraint
of the form in (3) (where pre-intervention time points are defined as those greater than or
equal to start.pre and less than or equal to end.pre).
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Feasibility

Note that Synth is built on the presumption that it is not feasible to exactly satisfy the
constraints that are used to match treatment and synthetic control. Although settings in-
volving micro-level data are presumed to involve a substantial number of untreated cases
and are consequentially more conducive to there existing a set of weights that satisfies all
constraints, microsynth is designed to handle circumstances in which there is no feasible solu-
tion to the constraints. If the user has set check.feas = TRUE, microsynth() will check for
the existence of a feasible solution prior to calculating weights. If a solution does not exist,
microsynth() partitions constraints into two classes:

1. Exact: Constraints that are to be exactly satisfied.

2. Proximate: Constraints that are to be approximately satisfied.

Weights are calculated so as to satisfy the first class of constraints while minimizing the degree
to which the second class is not satisfied.
The set of constraints specified by match.covar and match.out defines the first (or primary)
model for weighting, wherein they are treated as exact constraints. When this model is
not feasible, microsynth() uses backup models that reclassify constraints as follows. In the
second model (first backup), all constraints of the form in (1) and (2) are maintained as
exact constraints, whereas all outcomes-based constraints of the form in (3) are categorized
as proximate constraints. Furthermore, new constraints are considered wherein each outcome
must align for treatment and synthetic control when aggregated across all pre-intervention
time periods. Specifically,

T0∑
t=1

J0∑
j=1

wjYitj =
T0∑
t=1

J∑
j=J0+1

Yitj , (6)

for i ∈ (1, . . . , I); these are categorized as exact constraints. That is, outcome variables are
aggregated across the pre-intervention time period and then treatment is matched to synthetic
control across the aggregated versions.
If there is no solution to the exact constraints imposed by the first backup, a second backup is
considered. Therein, (1) is categorized as an exact constraint, whereas (2) and (3) are deemed
proximate constraints. This model will always be feasible (e.g., setting wj = (J − J0)/J0 for
all j ∈ (1, . . . , J0) will satisfy (1)).
When there are no proximate constraints involved, the function calibrate() from the R pack-
age survey (Lumley 2011) is used to find weights. This function employs calibration techniques
(Deville and Särndal 1992; Särndal 2007). The calibration algorithm assumes that weights
that satisfy all constraints exist. If proximate constraints are required, microsynth() will
use the R package LowRankQP (Ormerod and Wand 2020) to find weights.
To elaborate on the technicalities, let xj denote a vector that embodies all variables defining
the constraints given by (1)–(3) for region j. That is,

xj = (1, Y1j1, . . . , Y1jT0 , Y2j1, . . . , Y2jT0 , . . . , YIj1, . . . , YIjT0 ,R>j )>,

which is a (1 + L + IT0)-length vector, where > indicates a matrix transpose. Additionally,
the target totals for the treatment region are defined by tx =

∑J
j=J0+1 xj . If we further
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define w = (w1, . . . , wJ0)> and X = (x1, . . . ,xJ0)>, all constraints given by (1)–(3) are
encapsulated in the expression X>w = tx. If a solution to this expression is feasible, the
calibration technique is used and will return (calibrated) weights that satisfy all constraints
while minimizing the discrepancy between the calibrated weights and initial weights (which
are set as equaling (J − J0)/J0 for all cases) subject to a distance metric. We recommend
setting calfun = "linear" (which specifies that a linear distance metric of the form G(x) =
(1/2)(x−1)2 is used) and bounds = c(0, Inf), in which case the calibrated weights will also
minimize the Kish approximation of design effect (Kish 1965) to the degree possible. (The
design effect is defined as the inflation in variance due to weighting of the treatment effect
estimators.) When the inputs are specified in this manner, the calibrated weights are the
solution to the following quadratic program:

minimize
w

w>w

subject to X>w = tx,
w ≥ 0.

If a solution to X>w = tx with w ≥ 0 does not exist, proximate constraints must be
invoked. In this case, weights are found (using LowRankQP) that minimize the degree to
which proximate constraints are not satisfied while ensuring that the exact constraints are
satisfied. To elaborate, define the matrix X̃ and vector t̃x so as to contain the columns of X
and elements of tx, respectively, that correspond to the proximate constraints. Likewise, let
X∗ and t∗x denote analogues of X̃ and t̃x that correspond to the exact constraints. Therefore,
LowRankQP is used to find the solution to the following quadratic program:

minimize
w

(X̃>w− t̃x)>(X̃>w− t̃x)

subject to (X∗)>w = t∗x,
w ≥ 0.

The LowRankQP() function is processor- and memory-intensive, so the user should be cautious
when applying microsynth() in a manner that invokes proximate constraints with larger data
sets. Note that the user may prevent LowRankQP() from being executed by setting check.feas
= FALSE and use.backup = FALSE; however, this is inadvisable in the event that no feasible
solution exists for the constraints in the primary model.
For added flexibility, the microsynth user may directly specify constraints that are to be
categorized as proximate within the primary model. As noted previously, match.covar and
match.out specify exact constraints. The match.covar.min and match.out.min inputs are
of an analogous format that are used to specify proximate constraints.
As an alternative to re-categorizing constraints as proximate for the purpose of obtaining
feasibility, the microsynth user may choose to aggregate some exact constraints in order to
reduce the sparsity of the linear program. For instance, if data are observed quarterly, the user
may decide to match treatment and synthetic control on values that have been aggregated
to annual terms for a given outcome. Specifically, for an outcome i and a subset of pre-
intervention time periods (i.e., T∗ = (t1, t2, , . . . tτ ) ⊆ (1, . . . , T0)), the constraints

J0∑
j=1

wjYitj =
J∑

j=J0+1
Yitj ,
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for each t ∈ T∗, are replaced with a single exact constraint of the form

∑
t∈T∗

J0∑
j=1

wjYitj =
∑
t∈T∗

J∑
j=J0+1

Yitj .

By specifying match.out (and/or match.out.min) in a list format, the user may aggregate
constraints in this manner. See the microsynth vignettes and the documentation for the
microsynth() function for details.
Note that our procedure for using back-up models and/or aggregation to address infeasible
primary models is akin to approaches invoked with Synth (wherein minimization across a
linear combination of pre-intervention outcome values is a fundamental facet of the algorithm).

Jackknife and permutation weights

Recall that microsynth is designed to facilitate variance estimation in multiple manners, in-
cluding two separate replications methods: jackknife and permutation. Both methods require
calculation of several sets of additional weights. Within a jackknife, data units are randomly
segmented into G equal size and disjoint sub-samples. Let N (g) and C(g) denote the set of
cases from the intervention and control groups, respectively, that are in the g-th sub-sample.
Furthermore, the g-th replication group contains N (−g) and C(−g), which denote analogues of
N (g) and C(g) that contain all cases not in the g-th sub-sample. A separate set of weights is
calculated for each replication group. To determine the weights assigned to replication group
g, we calculate w(g)

j for j ∈ C(−g) so that the following constraints are satisfied:

∑
j∈C(−g)

w
(g)
j =

∑
j∈N(−g)

1, (7)

with ∑
j∈C(−g)

w
(g)
j R`j =

∑
j∈N(−g)

R`j (8)

for ` ∈ (1, . . . , L), and ∑
j∈C(−g)

w
(g)
j Yitj =

∑
j∈N(−g)

Yitj (9)

for all i ∈ (1, . . . , I) and t ∈ (1, . . . , T0). The above are jackknife analogues of (1)–(3). For
each j ∈ R(−g), we set w(g)

j = (J − J0)/(
∑
j∈R(−g) 1). The microsynth() input jack is used

to set the value of G. If jack = 0, then the jackknife is not run; otherwise G = jack. The
parameter jack cannot exceed the minimum of the number of treated units or the number of
control units (i.e., we enforce G ≤ min{J0, J − J0}). Note that setting jack = TRUE results
in G = min{J0, J − J0}, which is our recommended choice for G.
The permutation method, which is an analogue of the placebo method of Synth, involves
selecting a permuted treatment group of size J − J0 (the size of the true treatment group)
randomly from the J total units. Assume that K total permuted treatment groupings will
be selected. Let Ñ (k) and C̃(k) represent the treatment and control cases for the k-th per-
mutation, respectively. As with the jackknife, weights are recalculated for each permutation
grouping. Letting w̃(k)

j for j ∈ C̃(k) represent weights for the k-th permutation grouping, the
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w̃
(k)
j are selected to satisfy

∑
j∈C̃(k)

w̃
(k)
j =

∑
j∈Ñ(k)

1, with
∑

j∈C̃(k)

w̃
(k)
j R`j =

∑
j∈Ñ(k)

R`j

for ` ∈ (1, . . . , L), and ∑
j∈C̃(k)

w̃
(k)
j Yitj =

∑
j∈Ñ(k)

Yitj .

The microsynth() input perm sets the value of K. If perm = 0, permutation methods are
not applied; otherwise, K = perm. Furthermore, perm cannot exceed the number of possible
permutation groupings, i.e.,

( J
J0

)
. If

( J
J0

)
≤ 1000000, steps are taken to ensure that no two

permutation groupings are the same.
The processes used for calculating jackknife and permutation weights can be parallelized
within microsynth, which is controlled via the microsynth() input n.cores; this invokes the
package parallel (R Core Team 2020).

Weighting output

In all, G+K+ 1 sets of weights are created within microsynth(). Following completion of a
run of microsynth(), a ‘microsynth’ object (generically labeled ms here) is returned. Its first
element is a list (w), with its first element named Weights, which is itself a J × (G+K + 1)
matrix. The first column of ms$w$Weights contains the main weights; the next G columns
contain the jackknife weights (if calculated), and the final K columns contain the permutation
weights (if calculated). The second component of w is named Intervention, which is a
J × (G+K + 1) matrix of logical elements. Entries in ms$w$Intervention indicate whether
the case that corresponds to a given row is considered treated for the set of weights in a given
column. That is, the entries in ms$w$Intervention are TRUE for all elements corresponding
to the actual treatment group in the first G+ 1 columns and for elements that correspond to
permuted treatment cases in the final K columns. Columns corresponding to the jackknife
in ms$w$Intervention may have entries of NA, indicating cases that have been dropped from
the corresponding jackknife replication group. A balance table that illustrates the degree to
which the weights satisfy the specified constraints is given in the element ms$w$Summary.

3.3. Statistical inferences

Once weights have been created, the next step in microsynth() involves the tabulation
of results including point estimators of the treatment effect for each outcome as well as
inferences regarding the statistical significance of the estimators. Results are tabulated for
the variables listed in result.var (which by default includes all time variant variables in
data). Note that result.var can include variables external to those listed in match.out
and match.out.min. If result.var is NULL, no results are returned. An omnibus statistic is
created if omnibus.var is non-NULL, in which case; this statistic jointly assesses the statistical
significance of all variables listed in omnibus.var. Results may be returned in the form of
an Excel file or CSV when result.file, which indicates the name of the output file, is
non-NULL. As noted previously, statistical inference is performed by up to three methods:
(1) linearization, (2) jackknife, and (3) permutation. Linearization is performed so long as
result.var is non-NULL; results are tabulated for the jackknife and permutations so long
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as jack > 0 and perm > 0, respectively. In addition to being returned within an Excel file
(when result.file is non-NULL), any results that are tabulated are included as part of the
‘microsynth’ object that is returned when microsynth() completes, and can be viewed by
calling microsynth.tab(ms).

Calculation of results

Recall that our treatment effect estimator, α̂i, was defined in (4). However, in order to
evaluate uncertainty in this quantity and perform appropriate inferences, we formulate (and
fit) the outcome as a function of treatment status using a weighted linear model. Specifically,
consider

E[Yijt] = βit + aiDjt, (10)

where βit is a fixed effect for time t with T0 < t ≤ T . Further, Djt is a binary indicator
of treatment status that is unity only if case j is in the intervention group and t is a post-
intervention time. When this model is computed using weighted least squares (where we use
the synthetic control weights wj for cases in the control group and set wj = 1 for cases in
the treatment group), the estimate of ai in the above expression equals the treatment effect
estimate α̂i from (4) (Robbins et al. 2017). As such, the use of the synthetic control weights
in this model ensures that discrepancies (in terms of covariates and pre-intervention outcome
values) between treatment and control regions are taken into account. Software for survey
analysis will return an estimate of the standard error of α̂i when (10) is run.
The function svyglm() with a design object computed with svydesign() in the survey
package is used to approximate standard errors via linearization. Within this approach,
estimators from generalized linear models are written as a function of weighted totals (the
variance of which may be estimated through simple expressions). Taylor series approximations
are then used extract the variance of the estimator. See Binder (1983) and Lumley (2011) for
further details.
Similarly, the function svyglm() with a design object computed with svrepdesign() in the
survey package is used to calculate standard errors with a jackknife. The jackknife replication
weights that satisfy (7)–(9) are set as the object repweights within svrepdesign(). Let
α̂

(k)
i represent the version of α̂i calculated using the k-th set of replication weights (where

again wj = 1 for cases in the treatment group) with only cases in the k-th replication group.
The jackknife variance estimator is

V̂ar(α̂i) = G− 1
G

G∑
g=1

(α̂(g)
i − α̂i)

2.

Once α̂i and its standard error have been produced for each outcome in result.var (using
either linearization or the jackknife), basic statistical theory can be used to a determine p value
of a test that assesses the statistical significance of α̂i. That is,

Ẑi = α̂i√
V̂ar(α̂i)

(11)

is used as a test statistic (which is assumed to have a t-distribution). Following application
of additional Taylor series approximations, a confidence interval for ∆̂i from (5), which is
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the treatment effect written as percent change, is calculated (see Robbins et al. 2017, for de-
tails). The microsynth() inputs test and confidence specify the type of test (lower-tailed,
upper-tailed, two-sided) and the confidence level (e.g., 95%), respectively. Furthermore, an
omnibus test that jointly assesses the statistical significance for the outcomes in omnibus.var
is implemented as follows. Let â = (α̂1, . . . , α̂I) indicate the vector of treatment effects for
pertinent outcomes. Further, the estimated variance/covariance matrix of this vector is given
by C = Var(â). If a two-sided test is applied, the omnibus test statistic is represented
Ẑomni = â>C−1â, which is assumed to have a χ2 distribution with I degrees of freedom. For
details on the omnibus statistic for upper- or lower-tailed tests, see Robbins et al. (2017).
Likewise, permutation methods can be used to calculate p values and confidence intervals.
We calculate α̂(k)

i , which is a treatment effect estimator in the vein of (4) as found using the
k-th permutation group with corresponding permutation weights, for all k ∈ (1, . . . ,K) and
each i ∈ (1, . . . , I). This term is standardized in the vein of (11) to yield Ẑ(k)

i . To determine
α̂

(k)
i and its standard error, we estimate the parameter ai from (10) while using the k-th set of

permutation weights and while replacing Djt with a corresponding treatment status indicator
for the respective permutation group. The permutation-based p value for outcome i is set as

pi = {#k : Ẑ(k)
i < Ẑi}
K

for lower-tailed tests,

pi = {#k : Ẑ(k)
i > Ẑi}
K

for upper-tailed tests, and

pi = 2 min
{
{#k : Ẑ(k)

i < Ẑi}
K

,
{#k : Ẑ(k)

i > Ẑi}
K

}
(12)

for two-sided tests. We use (12) in lieu of an expression that involves squaring Ẑi since the
former does not mandate symmetry of the statistic’s sampling distribution. For upper- and
lower-tailed omnibus tests, p values are created by replacing Ẑi and Ẑ(k)

i with Ẑomni and Ẑ(k)
omni

in the respective formulas above. For a two-tailed omnibus test, we use pomni = K−1{#k :
Ẑ

(k)
omni > Ẑomni}, since the omnibus test rejects only for large values. See Robbins et al. (2017)

for a description of the manner in which a confidence interval is calculated for the treatment
effect (as a percent change) using permutation methods. The calculation of Ẑ(k)

i for all k can
be time-intensive, so those processes are parallelized (which is controlled using the parameter
n.cores).
If use.survey = FALSE, the permutation-based p values are calculated with α̂i and α̂(k)

i in
place of Ẑi and Ẑ(k)

i in the above expressions. This circumvents the need to calculate standard
errors of α̂(k)

i for each permutation group and therefore saves substantial computation time.
No confidence intervals are calculated for permutation methods in this case. Note that,
however, best practice is to use use.survey = TRUE.

Output of results for inference
A ‘microsynth’ object includes an element named Results which is a data frame that contains
the results described above. The element ms$Results contains one row for each outcome
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that is included in out.result and a final row that corresponds to the omnibus tests (if
omnibus.var is non-NULL). The first column of ms$Results, which is named Trt, gives the
aggregated outcome values across all cases in the treatment group. The second column,
named Con, gives corresponding values for the synthetic control group. The third column,
named Pct.Chng, gives the percent change between treatment and synthetic control (notated
as ∆̂i above and calculated as 100(Trt - Con)/Con). The next three columns give the p value
for a test of the statistical significance of the treatment effect as well as the upper and lower
bounds of a confidence interval for ∆̂i when founding using linearization. If jack > 0, the
following three columns give the p value and confidence interval when found using jackknife,
and if perm > 0, the final three columns will give the corresponding information when found
using permutation methods. Note that the row named omnibus will be empty for all columns
other than those containing p values. The user can write the contents of ms$Results directly
to an XLSX (Excel) or CSV (comma-separated values) file by specifying a file name via the
microsynth() input result.file.
Recall that the microsynth() input end.post can be an ordered (increasing) vector of post-
intervention time points. If end.post has length greater than one, ms$Results is a list with
one data frame for each element of end.post. Further, if an Excel file is created, it will have
one tab for each value in end.post.
The microsynth package also includes summary() and print() functions. The output of the
summary() function includes two parts: (1) a matching summary that compares characteris-
tics of the treatment to the synthetic control and the population; and (2) estimated results,
in a similar format as they appear when saved to CSV or XLSX. The print() function also
includes the estimated results (but not the matching summary) as well as other basic infor-
mation such as the number of treatment/control units, the number of constraints, and so
forth.

3.4. Plotting

The function plot_microsynth() can be used to produce time series plots comparing treat-
ment and synthetic control before and after the intervention. The primary input in this func-
tion is a parameter labeled ms, which is a ‘microsynth’ object. Plots may only be created for
variables that were included in the microsynth() parameters result.var or omnibus.var
during creation of ms. Plots can be produced as output (if plot.file = NULL) or written
directly to a PDF file, the name of which is provided in the input plot.file. A single PDF
file will be created with three pairs of figures per page unless sep = TRUE, in which case a
separate file is produced for each figure.
For each outcome in the plot_microsynth() parameter plot.var, two figures are created.
The figures are in the same format as those provided in Robbins et al. (2017). The first figure
charts the observed values for each outcome variable for the aggregated treatment group as
well as the corresponding value for the (weighted) synthetic control group for all time points
from start.pre to end.post. A horizontal red line is provided at end.pre to indicate the end
of the pre-intervention period. This figure also shows the level of the outcome across all cases
in the microsynth() parameter data, scaled by default to the number of treatment cases,
or to the value specified by the parameter scale.var in microsynth(). The second plot is
of a similar format but instead shows the difference between the treatment and (weighted)
synthetic control groups. To help the user visualize the uncertainty in the post -intervention
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treatment/control difference, the corresponding treatment/control difference is shown for the
permutation groups. Note that the values of start.pre, end.pre, and end.post may be
specified as inputs to plot_microsynth(); otherwise, they are taken from ms.

Output for plotting

A ‘microsynth’ object includes output that is used for plotting during application of function
plot_microsynth(). Specifically, the output of microsynth() includes an object named
Plot.Stats, which contains the data that are plotted. Specifically, ms$Plot.Stats is a list
with six elements, the first three of which (Treatment, Control, All) are matrices and the
fourth (Difference) is three-dimensional array that also contains data for the permutation
groups (when perm > 0). The final two (end.pre and scale.by)

4. Examples
To demonstrate functionality, we will use the seattledmi dataset provided with the mi-
crosynth package to evaluate a Drug Market Intervention (DMI) in Seattle, WA. The data
are measured at the level of the census block with quarterly time measurements and are given
in quarter-block panel format. The seattledmi dataset contains data on nine time-invariant
demographic-type covariates (measured using Census data) and ten time-varying outcomes,
each of which represents a type of crime (reported by the Seattle Police Department). There
are data measured across 16 quarters, the first 12 of which are considered pre-intervention.

R> library("microsynth")
R> data("seattledmi", package = "microsynth")

The DMI, which is an established crime-reduction mechanism (see Saunders et al. 2017, for
details), was applied to 39 blocks in the International District in Seattle. The remaining
9,603 Seattle blocks are potential comparison units from which the synthetic control may
be constructed. This data include variables "ID" to indicate observation units, "time" to
indicate the respective time period, and "Intervention", which is a binary variable with 0
for all untreated groups and the treated groups during the pre-intervention period and a 1
for treated groups at the time of intervention and later.

4.1. Example 1: A feasible first model with four outcomes

First, we will estimate the effect of the DMI on the incidences of four types of crime: felony
arrests, misdemeanor arrests, drug arrests, and any criminal arrest. That is, we set

R> match.out <- c("i_felony", "i_misdemea", "i_drugs", "any_crime")

We also use all available time invariant covariates:

R> cov.var <- c("TotalPop", "BLACK", "HISPANIC", "Males_1521", "HOUSEHOLDS",
+ "FAMILYHOUS", "FEMALE_HOU", "RENTER_HOU", "VACANT_HOU")

Passing these vectors to the inputs match.out and match.covar, respectively, instructs
microsynth to calculate weights that provide exact matches on these variables. Setting
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result.var = match.out and plot.var = match.out ensures that time series plots and
results will be provided for each of the four outcomes noted above. Lower-tailed tests (test
= "lower") are used since the DMI will, in theory, cause a reduction in crime levels. , since by
default match.out = result.var, these variables may be passed directly to result.var so
long as they are the only time-variant outcome variables for which we would like to compute
estimates and plots. Setting start.pre = 1, end.pre = 12, and end.post = 16 ensures
that the first twelve time periods will constitute the pre-intervention period and time peri-
ods 13–16 will constitute the post-intervention period. We set jack = TRUE, which runs the
jackknife with 39 groups (which equals the number of blocks in the treatment region), and
perm = 250 to create 250 placebo groups via permutation.
A ‘microsynth’ object named sea1 is created by executing the following code:

R> sea1 <- microsynth(seattledmi, idvar = "ID", timevar = "time",
+ intvar = "Intervention", start.pre = 1, end.pre = 12, end.post = 16,
+ match.out = match.out, match.covar = cov.var, result.var = match.out,
+ jack = TRUE, perm = 250, test = "lower", n.cores = 1)

Upon completion of the algorithm, one can use the summary() function to assess the results.

R> summary(sea1)

First, a balance table is given (with several rows omitted here) that is used to evaluate the
matching of treatment and control.

Weight Balance Table:
Targets Weighted.Control All.scaled

Intercept 39 39 39.0000
TotalPop 2994 2994 2384.7477
BLACK 173 173 190.5224
HISPANIC 149 149 159.2682
Males_1521 49 49 97.3746
HOUSEHOLDS 1968 1968 1113.5588
FAMILYHOUS 519 519 475.1876
FEMALE_HOU 101 101 81.1549
RENTER_HOU 1868 1868 581.9340
VACANT_HOU 160 160 98.4222
i_felony.12 14 14 4.9023
i_felony.11 11 11 4.6313
i_felony.10 9 9 3.0741
i_felony.9 5 5 3.2642
i_felony.8 20 20 4.4331
... ... ... ...
any_crime.5 270 270 50.6531
any_crime.4 250 250 57.2946
any_crime.3 236 236 58.8681
any_crime.2 250 250 51.5429
any_crime.1 242 242 55.1145
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From the table, it is confirmed that all constraints are satisfied (as the entries in the column
labeled Targets equal those in the column labeled Weighted.Control). Note that the first
row (Intercept) indicates that there are 39 blocks in the treatment area and that the weights
for the synthetic control sum to that value. Note also that the final column gives the corre-
sponding values when calculated across the entire dataset (scaled so to match the treatment
region on the basis of the intercept). Note that row names that correspond to time varying
outcomes are appended with the corresponding time period (e.g., i_felony.12 is the number
of felonies observed in the 12-th time period).
In addition, the summary function provides post-intervention inferences in tabulated form,
as shown below. (These may be also be viewed by calling sea1$Results.)

Results:

end.post = 16
Trt Con Pct.Chng Linear.pVal Linear.Lower Linear.Upper

i_felony 46 68.22 -32.6% 0.0109 -50.3% -8.4%
i_misdemea 45 71.80 -37.3% 0.0019 -52.8% -16.7%
i_drugs 20 23.76 -15.8% 0.2559 -46.4% 32.1%
any_crime 788 986.43 -20.1% 0.0146 -32.9% -4.9%
Omnibus -- -- -- 0.0010 -- --

Jack.pVal Jack.Lower Jack.Upper Perm.pVal Perm.Lower Perm.Upper
i_felony 0.0650 -54.6% 0.1% 0.0200 -50.9% -12.9%
i_misdemea 0.0725 -61.0% 0.7% 0.0080 -53.8% -17.3%
i_drugs 0.3190 -53.0% 50.9% 0.3040 -46.8% 22.2%
any_crime 0.0440 -35.3% -1.3% 0.0200 -30.8% -7.7%
Omnibus 0.0495 -- -- 0.0080 -- --

The results table gives the levels of the outcome when aggregated across the entire post-
intervention period for the treatment (Trt) and synthetic control (Con) groups. The estimated
treatment effect is given by the percent change which is calculated as Pct.Chng = 100(Trt-
Con)/Con. In subsequent columns, p values for the statistical significance of the estimated
treatment effect and a confidence interval (where the magnitude of confidence is given by
the parameter confidence) are provided for each outcome for all three methods of variance
estimation. p values of the omnibus statistic are given in the final row of the table. In this
Example, we see evidence that the DMI had a statistically significant effect on crime levels,
which is manifested in the number of felonies, misdemeanors, and total crimes (but not drug
crimes) that were reported in the post-intervention period.
Note that that the estimated variance is smaller when linearization is used than when the
jackknife is used. This observation is in line with prior research involving calibration (Kott
2006; Robbins, Ghosh-Dastidar, and Ramchand 2020). See Section 5 for more discussion.
The print() function provides additional summary information:

R> print(sea1)

Scope:
Units: Total: 9642 Treated: 39 Untreated: 9603
Study Period(s): Pre-period: 1 - 12 Post-period: 13 - 16
Constraints: Exact Match: 58 Minimized Distance: 0
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Time-variant outcomes:
Exact Match: i_felony, i_misdemea, i_drugs, any_crime (4)
Minimized Distance: (0)

Time-invariant covariates:
Exact Match: TotalPop, BLACK, HISPANIC, Males_1521, HOUSEHOLDS,

FAMILYHOUS, FEMALE_HOU, RENTER_HOU, VACANT_HOU (9)
Minimized Distance: (0)

Note that the balance table shown above can be extracted using the element sea1$w$Summary.
Via the xtable package (Dahl, Scott, Roosen, and Magnusson 2019), for example, one may
output this table into a LATEX document:

R> library("xtable")
R> print(xtable(sea1$w$Summary, type = "latex",
+ tabular.environment = "longtable"), file = "Ex1wSummary.tex")

Furthermore, the plot_microsynth() function may be used to produce time series plots of
the outcomes.

R> plot_microsynth(sea1)

The plots are shown in Figure 1 for this example. The plots indicate that treatment is exactly
matched to synthetic control during pre-intervention time periods. Further, the observed
levels of crime are lower than they would have been in the absence of treatment for all
outcomes except for drug crimes (i_drugs). Since the difference in treatment and synthetic
control extends beyond that seen within the placebo regions, there are indications that the
effect is statistically significant.

4.2. Example 2: Infeasible first model

Next, we augment the number of outcomes that will be considered to include counts for a
total of nine types of crimes (i.e., robberies, aggravated assaults, burglaries, larcenies, felonies,
misdemeanors, drug sales, drug possessions, and total crimes).

R> match.out <- c("i_robbery", "i_aggassau", "i_burglary", "i_larceny",
+ "i_felony", "i_misdemea", "i_drugsale", "i_drugposs", "any_crime")

However, the extra outcome variables implies that there are 60 additional constraints for
matching. As such, the added sparsity decreases the likelihood that a set of weights exists
that exactly match treatment and synthetic control. To allow the possibility that a feasible
solution to all constraints does not exist, we set check.feas = TRUE and use.backup =
TRUE.

R> sea2 <- microsynth(seattledmi, idvar = "ID", timevar = "time",
+ intvar = "Intervention", start.pre = 1, end.pre = 12, end.post = 16,
+ match.out = match.out, match.covar = cov.var, result.var = match.out,
+ jack = TRUE, perm = 250, check.feas = TRUE, use.backup = TRUE,
+ test = "lower", n.cores = 1)
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Figure 1: Time series plots for Example 1. Plots on the right give the difference between
treatment and synthetic control with permutation groups plotted in gray. The x-axis indicates
the time period (1–16).
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In this example, the constraints indicated by the specified model do not yield a feasible solu-
tion. As such, the algorithm uses the second model (first backup) for matching as described
in Section 3.2, for which a feasible solution does exist. The microsynth package provides this
information to the user by printing the following output as the algorithm is being run:

Checking feasibility of first model...
First model is infeasible.
Checking feasibility of second model...
Second model is feasible.

The summary balance table for this example is shown below. Each outcome was aggregated
across the 12 pre-intervention time periods (see i_robbery.1.12, for example) and matched
exactly on the resulting aggregated outcomes. Furthermore, the constraints given by intercept
and covariates are matched exactly. However, the remaining constraints (i.e., the outcomes
at each specific time period) are matched as closely as possible.

R> summary(sea2)

Weight Balance Table:
Targets Final.Weighted.Control All.scaled

Intercept 39 39.0000 39.0000
TotalPop 2994 2994.0000 2384.7477
... ... ... ...
RENTER_HOU 1868 1868.0000 581.9340
VACANT_HOU 160 160.0000 98.4222
i_robbery.1.12 68 68.0000 15.6938
i_aggassau.1.12 43 43.0000 12.0737
i_burglary.1.12 805 805.0000 193.3740
i_larceny.1.12 486 486.0000 121.4250
i_felony.1.12 142 142.0000 44.3351
i_misdemea.1.12 197 197.0000 48.4284
i_drugsale.1.12 25 25.0000 5.2057
i_drugposs.1.12 49 49.0000 9.8693
any_crime.1.12 2780 2780.0000 676.4328
i_robbery.12 12 11.3780 1.7352
i_robbery.11 9 8.1200 1.6058
i_robbery.10 4 3.8790 1.1892
i_robbery.9 1 1.4904 1.1325
i_robbery.8 7 6.3736 1.2620
... ... ... ...
any_crime.5 270 261.3992 50.6531
any_crime.4 250 243.6447 57.2946
any_crime.3 236 237.5359 58.8681
any_crime.2 250 253.0278 51.5429
any_crime.1 242 239.5277 55.1145

The above observations are confirmed by the results summary listed below. Many outcomes
(though not all) observe a statistically significant effect of the intervention (except for when
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the jackknife is used, which is a consequence of the increased variance that results from the
jackknife). Further, the inclusion of additional outcomes causes the omnibus test to no longer
result in a significant finding.

Results:

end.post = 16
Trt Con Pct.Chng Linear.pVal Linear.Lower Linear.Upper

i_robbery 11 21.49 -48.8% 0.0119 -70.2% -12.0%
i_aggassau 12 16.46 -27.1% 0.1620 -58.5% 28.2%
i_burglary 245 294.10 -16.7% 0.0857 -33.2% 3.9%
i_larceny 145 165.45 -12.4% 0.1754 -30.5% 10.5%
i_felony 46 51.74 -11.1% 0.2788 -36.4% 24.2%
i_misdemea 45 62.75 -28.3% 0.0387 -47.5% -2.0%
i_drugsale 11 4.22 160.9% 0.9482 23.6% 450.7%
i_drugposs 9 17.15 -47.5% 0.0225 -71.1% -4.7%
any_crime 788 921.55 -14.5% 0.0963 -29.8% 4.1%
Omnibus -- -- -- 0.0149 -- --

Jack.pVal Jack.Lower Jack.Upper Perm.pVal Perm.Lower Perm.Upper
i_robbery 0.1708 -81.5% 41.9% 0.0320 -71.7% -20.4%
i_aggassau 0.2427 -63.6% 46.2% 0.1720 -61.4% 13.3%
i_burglary 0.1575 -37.6% 11.3% 0.0520 -33.0% -0.5%
i_larceny 0.2283 -34.1% 16.5% 0.1160 -30.9% 5.5%
i_felony 0.4081 -59.9% 97.1% 0.2280 -39.4% 16.6%
i_misdemea 0.2011 -60.7% 30.9% 0.0480 -49.4% -3.9%
i_drugsale 0.7891 -86.5% 4923.2% 0.9840 2.0% 296.3%
i_drugposs 0.1178 -76.5% 16.9% 0.0440 -73.6% -17.0%
any_crime 0.1879 -35.8% 13.8% 0.0520 -29.9% 0.1%
Omnibus 0.1225 -- -- 0.0480 -- --

Also, the example above illustrates that confidence intervals and p values may yield contra-
dicting findings when permutation is used for variance estimation. For instance, with the
outcome i_drugposs, the p value does not indicate statistical significance, but the confidence
interval does not contain zero. This issue is a consequence of the confidence intervals being
determined using approximation techniques and is exacerbated when considering outcomes
that have low prevalence.
Time series plots for four of the outcomes in this example are shown in Figure 2.

R> plot_microsynth(sea2)

From the plots, we see an indication that the intervention may have increased the number of
reported drug sales but decreased the number of drug possessions. This may be a consequence
of the DMI resulting in a crackdown on drug sales and may also explain the lack of an effect
of the intervention on total drug crimes as seen in Example 1. The plots also indicate the
presence of an intervention effect on other outcomes, but the effect does not appear as marked
as in the prior example.
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Figure 2: Time series plots for Example 2. Plots on the right give the difference between
treatment and synthetic control with permutation groups plotted in gray. The x-axis indicates
the time period (1–16).
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4.3. Example 3: match.out as a list

As an alternative to using a built-in backup model to obtain feasibility when the initial set
of constraints is infeasible, one may specify match.out in a list format in order to aggregate
specific outcomes across specific time periods and thereby reduce the number of constraints
needed.

R> match.out <- list("i_robbery" = rep(2, 6), "i_aggassau" = rep(2, 6),
+ "i_burglary" = rep(1, 12), "i_larceny" = rep(1, 12),
+ "i_felony" = rep(2, 6), "i_misdemea" = rep(2, 6),
+ "i_drugsale" = rep(4, 3), "i_drugposs" = rep(4, 3),
+ "any_crime" = rep(1, 12))

This list tells microsynth() which variables to use for matching and which time periods to
aggregate for each variable. Variables with higher prevalence are kept as quarterly counts
whereas more sparse variables are aggregated to biannual or annual frequency. Specifically,
quarterly versions of i_burglary, i_larceny, and any_crime are used, whereas biannual
versions of i_robbery, i_aggassau, i_felony, and i_misdemea and annual versions of
i_drugsale, and i_drugposs are used.
Note that when running microsynth() with match.out in list format, one should not feed
match.out as defined above into parameters such as result.var (names(match.out) could
be used instead).
The call to microsynth() in this example is:

R> sea3 <- microsynth(seattledmi, idvar = "ID", timevar = "time",
+ intvar = "Intervention", start.pre = 1, end.pre = 12, end.post = 16,
+ match.out = match.out, match.covar = cov.var,
+ result.var = names(match.out), jack = TRUE, perm = 250,
+ test = "lower", n.cores = 1)

In the summary balance table below, we can see that all constraints are satisfied.

R> summary(sea3)

Weight Balance Table:
Targets Weighted.Control All.scaled

Intercept 39 39 39.0000
TotalPop 2994 2994 2384.7477
... ... ... ...
RENTER_HOU 1868 1868 581.9340
VACANT_HOU 160 160 98.4222
i_robbery.11.12 21 21 3.3410
i_robbery.9.10 5 5 2.3217
i_robbery.7.8 10 10 2.4916
i_robbery.5.6 9 9 2.5644
... ... ... ...
i_drugposs.9.12 17 17 3.6120
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i_drugposs.5.8 13 13 2.9608
i_drugposs.1.4 19 19 3.2965
any_crime.12 272 272 65.3398
any_crime.11 227 227 64.2396
... ... ... ...
any_crime.2 250 250 51.5429
any_crime.1 242 242 55.1145

In the results for Example 3, shown below, we see indications of a statistically significant
treatment effect for a handful of outcomes when linearization or permutation is used for
variance estimation.

Results:

end.post = 16
Trt Con Pct.Chng Linear.pVal Linear.Lower Linear.Upper

i_robbery 11 18.60 -40.9% 0.0426 -65.8% 2.3%
i_aggassau 12 16.64 -27.9% 0.1593 -59.3% 27.9%
i_burglary 245 314.59 -22.1% 0.0217 -36.7% -4.1%
i_larceny 145 168.76 -14.1% 0.1303 -31.2% 7.3%
i_felony 46 52.83 -12.9% 0.2555 -38.6% 23.5%
i_misdemea 45 56.78 -20.7% 0.1134 -42.4% 9.0%
i_drugsale 11 6.13 79.5% 0.8643 -18.1% 293.3%
i_drugposs 9 15.46 -41.8% 0.0619 -68.8% 8.5%
any_crime 788 961.63 -18.1% 0.0405 -32.1% -1.1%
Omnibus -- -- -- 0.0730 -- --

Jack.pVal Jack.Lower Jack.Upper Perm.pVal Perm.Lower Perm.Upper
i_robbery 0.2735 -82.1% 95.3% 0.0800 -65.4% -6.3%
i_aggassau 0.3714 -83.0% 206.4% 0.2280 -59.7% 12.5%
i_burglary 0.2307 -52.8% 28.6% 0.0080 -34.7% -9.1%
i_larceny 0.3387 -50.9% 50.3% 0.1440 -30.1% 7.0%
i_felony 0.3835 -57.9% 80.0% 0.3040 -37.9% 23.6%
i_misdemea 0.3124 -61.3% 62.3% 0.1440 -41.7% 5.0%
i_drugsale 0.6988 -81.7% 1659.9% 0.9400 -20.3% 159.3%
i_drugposs 0.2653 -81.6% 83.9% 0.1560 -65.2% -8.0%
any_crime 0.2658 -49.2% 32.3% 0.0240 -28.6% -3.6%
Omnibus 0.2709 -- -- 0.2400 -- --

The jackknife yields results, however, that are markedly different from the other methods of
variance estimation in this example. Specifically, p values founding using the jackknife are
never less than 0.25, whereas several p values are less than 0.05 when other methods are
used. This discrepancy is explained by the fact that constraints used for matching did not
have a feasible solution for several of the jackknife replication groups in this example. As a
consequence, variance is artificially inflated. The microsynth package prints output during
the running of the algorithm that indicates this problem:

First model was infeasible for jackknife group 4.
First model was infeasible for jackknife group 6.
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...
First model was infeasible for jackknife group 37.
First model was infeasible for jackknife group 38.

The time series plots (see Figure 3 for plots of four outcomes) indicate that treatment and
synthetic control do not match across all time points for all outcomes, as expected. Further,
the plots confirm the appearance of a treatment effect for some of the outcomes.

R> plot_microsynth(sea3)

4.4. Example 4: One treated case

Although designed for granular data, microsynth is applicable with macro-level data, wherein
one may have only a single treated case. To illustrate this functionality, we reduce seattledmi
to a truncated dataset that has a single treated case and 100 non-treated cases as follows:

R> ids.t <- names(table(seattledmi$ID[seattledmi$Intervention == 1]))
R> ids.c <- names(table(seattledmi$ID[seattledmi$Intervention == 0]))
R> ids.synth <- c(base::sample(ids.t, 1), base::sample(ids.c, 100))
R> seattledmi.one <- seattledmi[is.element(seattledmi$ID,
+ as.numeric(ids.synth)), ]

Given the small number of treated and untreated cases in this example, it is unlikely that
it will be possible to exactly match treatment and synthetic control. Therefore, we set
check.feas = TRUE and use.backup = TRUE. Further, the jackknife should not be run with
small numbers of cases, so we set jack = FALSE. Additionally, we only consider a single
outcome ("any_crime").

R> sea4 <- microsynth(seattledmi.one, idvar = "ID", timevar = "time",
+ intvar = "Intervention", start.pre = 1, end.pre = 12, end.post = 16,
+ match.out = "any_crime", match.covar = cov.var, result.var = "any_crime",
+ test = "lower", perm = 250, jack = FALSE,
+ check.feas = TRUE, use.backup = TRUE, n.cores = 1)

When there is a single treated case, the number of possible placebo groups for permutation
equals the number of untreated cases. Therefore, microsynth will reset the number of permu-
tation groups to equal 100 in this example, as indicated by the following printed output:

Resetting perm = 100

In this example, neither the first nor second models had feasible solutions. Therefore, the
third model (wherein only the intercept is matched exactly and all other constraints are
matched as closely as possible thereafter) is used, as shown by the following:

Checking feasibility of first model...
First model is infeasible.
Checking feasibility of second model...
Second model is infeasible.
Will use third model.
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Figure 3: Time series plots for Example 3. Plots on the right give the difference between
treatment and synthetic control with permutation groups plotted in gray. The x-axis indicates
the time period (1–16).
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The resulting discordance between treatment and synthetic control may be seen in the balance
table below; we see that treatment and synthetic control are not matched.

R> summary(sea4)

Weight Balance Table:
Targets Final.Weighted.Control All.scaled

Intercept 1 1.0000 1.0000
TotalPop 43 45.0872 63.9208
... ... ... ...
RENTER_HOU 21 14.0944 16.1089
VACANT_HOU 0 0.6826 2.2079
any_crime.12 3 2.3876 1.4554
any_crime.11 1 0.9742 1.2574
... ... ... ...
any_crime.2 1 1.3649 0.9604
any_crime.1 1 0.4959 1.0297

In line with the work of Abadie and Gardeazabal (2003) and Abadie et al. (2010), linearization
should not be considered when there is a single treated unit. In addition, confidence intervals
could yield misleading results with such data. Therefore, only p values determined using
permutation should be used for inference in this example, as seen below.

Results:

end.post = 16
Trt Con Pct.Chng Perm.pVal

any_crime 2 5.53 -63.8% 0.0800

The time series plots in Figure 4 also illustrate that treatment and synthetic control are not
matched exactly in the pre-intervention time periods.

R> plot_microsynth(sea4)

4.5. Example 5: Cross-sectional data

Although designed for longitudinal data, microsynth can be used to create propensity score-
type weights with cross-sectional data. In such settings, the method applied aligns with
that Hainmueller (2012), wherein calibration as a means of obtaining exact balance between
treatment and control groups is proposed. To illustrate, we first isolate to the cross section
of seattledmi at time 16:

R> seattledmi.cross <- seattledmi[seattledmi$time == 16,
+ colnames(seattledmi) != "time"]

Since the data are cross-sectional in this example, we set timevar = NULL. Likewise, we may
only match on time-invariant covariates, so we use match.out = FALSE. (We cannot match
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Figure 4: Time series plots for Example 4. Plots on the right give the difference between
treatment and synthetic control with permutation groups plotted in gray. The x-axis indicates
the time period (1–16).

on outcome variables since there are no pre-intervention values of the outcomes in the cross-
sectional setting.) However, we set result.var = match.out to tabulate results across the
desired outcomes. All three methods of variance estimation may be used here.

R> sea5 <- microsynth(seattledmi.cross, idvar = "ID",
+ intvar = "Intervention", timevar = NULL, match.out = FALSE,
+ match.covar = cov.var, result.var = match.out, test = "lower",
+ perm = 250, jack = TRUE, cal.epsilon = 1e-06, n.cores = 1)

The summary balance table shows that treatment and synthetic control are exactly matched
all constraints, which include the intercept and time invariant covariates (with no outcomes).

R> summary(sea5)

Weight Balance Table:
Targets Weighted.Control All.scaled

Intercept 39 39 39.00000
TotalPop 2994 2994 2384.74767
BLACK 173 173 190.52240
HISPANIC 149 149 159.26820
Males_1521 49 49 97.37461
HOUSEHOLDS 1968 1968 1113.55881
FAMILYHOUS 519 519 475.18762
FEMALE_HOU 101 101 81.15495
RENTER_HOU 1868 1868 581.93404
VACANT_HOU 160 160 98.42222

Results are shown in the summary output below. In this case, all methods of variance
estimation indicate that the intervention was associated with a marked increase in crime levels
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(even after controlling for covariates). However, this illustrates the issues inherent with causal
inference using cross sectional observational data. The treatment area observes drastically
higher crime levels than other areas of Seattle both before and after the intervention. We see
that controlling for covariates does not explain this difference. Therefore, the results below
are driven by confounding and not by a causal signal.

Results:

end.post = 1
Trt Con Pct.Chng Linear.pVal Linear.Lower Linear.Upper

i_felony 11 5.58 97.1% 0.9380 12.9% 243.8%
i_misdemea 15 6.21 141.6% 0.9865 50.8% 287.3%
i_drugs 3 2.01 49.4% 0.7211 -42.0% 284.9%
any_crime 154 82.99 85.6% 0.9912 32.8% 159.2%
Omnibus -- -- -- 0.9983 -- --

Jack.pVal Jack.Lower Jack.Upper Perm.pVal Perm.Lower Perm.Upper
i_felony 0.9375 12.1% 246.4% 0.9840 10.6% 200.6%
i_misdemea 0.9886 52.0% 284.2% 1.0000 32.6% 243.7%
i_drugs 0.7234 -42.6% 288.8% 0.8360 -44.5% 84.4%
any_crime 0.9926 33.2% 158.5% 1.0000 44.5% 219.5%
Omnibus 0.9957 -- -- 1.0000 -- --

Time series plots are not generated in this example because the cross-sectional data are used.
Note that entropy balancing as proposed by Hainmueller (2012) involves matching treatment
and control groups across higher moments of covariates. However, microsynth as written
only matches across the first moment of the covariates R`j . To balance entropy across higher
moments of the covariates, variables defined by Rν`j for some values of ν so that ν > 1 should
be appended to data and included in the match.covar statement. Note also that the entropy
balancing method of Hainmueller (2012) uses a log-based distance metric in the calibration
of weights – this metric can be employed within microsynth by setting calfun = "raking".

4.6. Example 6: Separate steps for weights and results
Although microsynth() is designed to preform weight calculations and result tabulations
simultaneously, the function can be used to perform the requisite computations in single
steps. To elaborate, we return the setup of Example 1.
First, in order to use microsynth() to only calculate weights and not tabulate results, set
result.var = NULL. Specifically:

R> sea6a <- microsynth(seattledmi, idvar = "ID", timevar = "time",
+ intvar = "Intervention", start.pre = 1, end.pre = 12,
+ match.out = match.out, match.covar = cov.var, result.var = NULL,
+ jack = TRUE, perm = 250, cal.epsilon = 1e-05)

Next, in order to tabulate results without recalculating weights, we input the resulting
‘microsynth’ object (sea6a) into a second application of microsynth() that uses a non-
null value of result.var. Specifically, we set w = sea6a (alternatively, we could use w =
sea6a$w). That is:
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R> sea6b <- microsynth(seattledmi, idvar = "ID", timevar = "time",
+ intvar = "Intervention", end.pre = 12, end.post = 16,
+ result.var = match.out, w = sea6a, test = "lower")

Note that any ‘microsynth’ object (including one that contains tabulated results) can be
input into microsynth() via the parameter w in order to avoid recalculating weights.

5. Discussion
We conclude with some points of discussion. First, we provide guidance for the reader as to
which methods of inference may be preferable, and we then compare and contrast microsynth
with Synth.
Recall that microsynth will produce inferences found using up to three methods. Ideally,
all three methods will yield the same conclusions, but in practice that may not be the case.
Ergo, which method should form the basis of conclusions? As observed within Kott (2006),
linearization is known to understate variance (meaning p values will be too small and confi-
dence intervals will be too narrow), whereas the jackknife tends to overstate variance (leading
to inflated p values and wide confidence intervals) in applications involving analysis of sur-
veys where weights have been calibrated. The issues with the jackknife may be exacerbated
in settings appropriate for microsynth. For instance, in applications of microsynth, the de-
sign effect (an indication of the inflation of variance due to weighting) tends to be higher for
jackknife replication weights than for the main weights. Likewise, in circumstances where
the primary model for weighting is infeasible and backup models are used, as in Example 2,
jackknife replication weights have more pre-intervention error than do the main weights. In
short, the jackknife should be used with caution in settings involving a low number of treated
cases and/or an infeasible primary model.
Evidence suggests that permutation methods perform well for assessing the statistical signif-
icance of treatment effects. However, the approximations that yield the confidence interval
for the permutation methods are more tenuous than those that yield confidence intervals
based on standard errors (i.e., linearization and jackknife). Furthermore, we have observed
that interval estimation is difficult with count outcomes that have a high prevalence of zeros
across cases regardless of method.
Recall also that microsynth is an extension of the R package Synth. However, Synth requires
data with a single treated unit, whereas microsynth relaxes that restriction. One should
not apply Synth to data with more than one treated unit while aggregating the data in the
treatment region and leaving untreated areas disaggregated (in this case, Synth will create
weights that sum to unity whereas the weights should sum to J −J0 as in (1)). Furthermore,
microsynth uses different algorithms for weighting, is designed to handle multiple outcomes
simultaneously, and provides a wider array of procedures for producing statistical inferences.
Although microsynth can be applied when there is exactly one treated case, the procedure used
in such settings differs from that of Synth. For example, Synth employs a nested optimization
model, wherein iteration is used to determine an optimal manner of emphasizing certain
(linear combinations of) constraints while minimizing the discrepancy between treatment and
synthetic control over all constraints. This functionality is not employed in microsynth (and
is not relevant if exact matches between treatment and synthetic control exist), which helps
improve computational efficiency.
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Furthermore, there are marked differences among inputs and outputs between the Synth and
microsynth packages: The two packages require similarly formatted data as input (a data
frame in tall format), although Synth uses a separate function, dataprep, for data process-
ing, which is not required by microsynth. Furthermore, microsynth() includes parameters to
allow for matching across multiple outcome variables, the possibility than an exact match may
or may not exist, aggregation of pre-intervention time periods, jackknife weights, permutation
weights, omnibus statistics, calibration weighting, etc. However, Synth also includes inputs
to help determine how much emphasis to give certain constraints over others in weighting,
which is not a facet of microsynth. The Synth package uses a separate function, synth.tab(),
to generate weighting summaries, including a balance assessment for predictors. Analogous
summaries are produced within microsynth(). Execution of placebo/permutation methods
within Synth requires that iteratively re-assign treatment status, whereas microsynth can au-
tomatically create permutation weights within microsynth(), while the user need only specify
the number of permutation groups to create. Furthermore, post-intervention inferences using
Synth are provided only through plotting with no automated manner of performing permu-
tation/placebo tests. In addition to having plotting capabilities, microsynth also tabulates
post-intervention inferences using up to three separate methods for calculating p values and
confidence intervals of treatment effects.
Lastly, recall that microsynth does not allow for missing values in the dataset on which the
methods are to be applied. We provide some brief guidance regarding manners in which miss-
ing data can be addressed. First, complete case analysis presents a basic option for handling
data with missing values (Little and Rubin 2019), although imputation of missing covariate
values is recommended in some cases (D’Agostino, Lang, Walkup, Morgan, and Karter 2001;
Stuart and Rubin 2008). Furthermore, Amjad, Shah, and Shen (2018) introduces a frame-
work for addressing missing data in synthetic control procedures. Note that several researchers
(e.g., What Works Clearinghouse 2015) advise against the use of quasi-experimental methods
in any data containing missing values. Regardless, we urge the user to keep in mind that
the aforementioned methods for handling missing data make missing at random assumptions
(Little and Rubin 2019).
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