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The validation of the results obtained by clustering algorithms is a fundamental part of the clustering

process. The most used approaches for cluster validation are based on internal cluster validity indices.

Although many indices have been proposed, there is no recent extensive comparative study of their

performance. In this paper we show the results of an experimental work that compares 30 cluster

validity indices in many different environments with different characteristics. These results can serve

as a guideline for selecting the most suitable index for each possible application and provide a deep

insight into the performance differences between the currently available indices.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Clustering is an unsupervised pattern classification method
that partitions the input space into clusters. The goal of a
clustering algorithm is to perform a partition where objects
within a cluster are similar and objects in different clusters are
dissimilar. Therefore, the purpose of clustering is to identify
natural structures in a dataset [1–4] and it is widely used in
many fields such as psychology [5], biology [4], pattern recogni-
tion [3], image processing [6] and computer security [7].

Once a clustering algorithm has processed a dataset and
obtained a partition of the input data, a relevant question arises:
How well does the proposed partition fit the input data? This
question is relevant for two main reasons. First, an optimal
clustering algorithm does not exist. In other words, different
algorithms — or even different configurations of the same algo-
rithm — produce different partitions and none of them have
proved to be the best in all situations [8]. Thus, in an effective
clustering process we should compute different partitions and
select the one that best fits the data. Secondly, many clustering
algorithms are not able to determine the number of natural
clusters in the data, and therefore they must initially be supplied
with this information—frequently known as the k parameter.
Since this information is rarely previously known, the usual
approach is to run the algorithm several times with a different
k value for each run. Then, all the partitions are evaluated and the
partition that best fits the data is selected. The process of
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estimating how well a partition fits the structure underlying the
data is known as cluster validation [1].

Cluster validation is a difficult task and lacks the theoretical
background other areas, such as supervised learning, have. More-
over, a recent work argues the suitability of context-dependent
evaluation methods [9]. Nevertheless, the authors also state that the
analysis of cluster validation techniques is a valid research question
in some contexts, such as clustering algorithms’ optimization.
Moreover, in our opinion, cluster validation tools analyzed in
context-independent evaluations will greatly contribute to context-
dependent evaluation strategies. Therefore, our work is based on a
general, context-independent cluster evaluation process.

In this context, it is usual to classify the cluster validation
techniques into three groups — internal, external and relative
validation — but the classification criteria are not always clear
[10,1,2,11]. In any case, there is a clear distinction between valida-
tion techniques if we focus on the information available in the
validation process. Some techniques — related to external validation
— validate a partition by comparing it with the correct partition.
Other techniques — related to internal validation — validate a
partition by examining just the partitioned data. Obviously, the
former can only make sense in a controlled test environment, since
in a real application the underlying structure of the data is unknown
and, therefore, the correct partition is not available.

When the correct partition is available the usual approach is to
compare it with the partition proposed by the clustering algo-
rithm based on one of the many indices that compare data
partitions; e.g. Rand, Adjusted Rand, Jaccard, Fowlkes–Mallows,
Variation of Information [12].

On the other hand, when the correct partition is not available
there are several approaches to validating a partition. One of
them is to focus on the partitioned data and to measure the
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compactness and separation of the clusters. In this case another
type of index is used; e.g. Dunn [13], Davies–Bouldin [14],
Calinski–Harabasz [15]. Another more recent approach is the
stability based validation [16,17] which is not model dependant
and does not require any assumption of compactness. This
approach does not directly validate a partition, but it relies on
the stability of the clustering algorithm over different samples of
the input dataset.

The differences of the mentioned validation approaches make it
difficult to compare all of them in the same framework. This work
focuses on the first approach mentioned, which directly estimates
the quality of a partition by measuring the compactness and
separation of the clusters. Although there is no standard terminol-
ogy, in the remainder of this paper we will call Cluster Validity Index

(CVI) to these kind of indices. For the indices that compare two
partitions we will use the term Partition Similarity Measure.

Previous works have shown that there is no single CVI that
outperforms the rest [18–20]. This is not surprising since the same
occurs in many other areas and this is why we usually deal with
multiple clustering algorithms, partition similarity measures, clas-
sification algorithms, validation techniques, etc. This makes it
obvious that researchers and practitioners need some guidelines
on which particular tool they should use in each environment.

Focusing on internal cluster validation, we can find some
works that compare a set of CVIs and, therefore, these could be
used as guidelines for selecting the most suitable CVI in each
environment. However, most of these comparisons are related to
the proposal of a new CVI [6,21–24] or variants of known CVIs
[25,8,26] and, unfortunately, the experiments are usually per-
formed in restricted environments—few CVIs compared on few
datasets, just one clustering algorithm implied. There are few
works that do not propose a new CVI but compare some of them
in order to draw some general conclusions [10,18,27,20]. Surpris-
ingly, the 25 year-old paper of Milligan and Cooper [20] is the
work most cited as a CVI comparison reference. Certainly, to the
best of our knowledge, nobody has since published such an
extensive and systematic comparative study.

In this paper we present the results of an extensive CVI
comparison along the same lines as Milligan and Cooper [20],
which is the last work that compares a set of 30 CVIs based on the
results obtained in hundreds of environments. We claim that we
have improved the referenced work in three main areas. First, we
can compare many new indices that did not exist in 1985 and
discard those that have rarely been used since. Second, we can
take advantage of the increases in computational power achieved
in recent decades to carry out a wider experiment. Finally, thanks
to the advances in communication technologies we can easily
store all the detailed results available in electronic format, so that
every reader can access them and focus on the results that are
relevant in his/her particular environment.

Moreover, our work is based on a corrected methodology that
avoids an incorrect assumption made by the usual CVI compar-
ison methodology [28]. Therefore, we present two main contribu-
tions in this paper. First, we present the main results of the most
extensive CVI comparison ever carried out. Second, this compar-
ison is the first extensive CVI comparison carried out with the
methodological correction proposed by Gurrutxaga et al. [28].
Moreover, although the experiment’s size prevents us from
publishing all the results in this paper, they are all available in
electronic format in the web.1

The next section discusses other works related to CVI compar-
ison. Section 3 describes all the cluster validity indices compared
in this work and Section 4 describes the particular details of the
1 http://www.sc.ehu.es/aldapa/cvi.
experimental design. In Section 5 we show the main results of the
work and, finally, we draw some conclusions and suggest some
possible extensions in Section 6
2. Related work

Most of the works that compare CVIs use the same approach:
A set of CVIs is used to estimate the number of clusters in a set of
datasets partitioned by several algorithms. The number of suc-
cesses of each CVI in the experiment can be called its score and is
considered an estimator of its ‘‘quality’’. For a more formal
description of this methodology and a possible alternative to it
see [28].

Despite this widely used approach, most of the works are not
comparable since they differ in the CVIs compared, datasets used,
results analysis. In this section we overview some of the works
that compare a set of CVIs, focusing on the experiment
characteristics.

The paper published by Milligan and Cooper [20] in 1985 is
still the work of reference on internal cluster validation. That
work compared 30 CVIs. The authors called them ‘‘Stopping
criteria’’ because they were used to stop the agglomerative
process of a hierarchical clustering algorithm [2,4] and this is
why the experiments were done with hierarchical clustering
algorithms (single-linkage, complete-linkage, average-linkage
and Ward). They used 108 synthetic datasets with a varying
number of non-overlapped clusters (2, 3, 4 or 5), dimensionality
(4, 6 or 8) and cluster sizes. They presented the results in a tabular
format, showing the number of times that each CVI predicted the
correct number of clusters. Moreover, the tables also included the
number of times that the prediction of each CVI overestimated or
underestimated the real number of clusters by 1 or 2.

The same tabular format was used by Dubes [27] two years
later. The novelty of this work is that the author used some tables
where the score of each CVI was shown according to the values of
each experimental factor—clustering algorithm, dataset dimen-
sionality, number of clusters. Moreover, he used the w2 statistic to
test the effect of each factor on the behaviour of the compared
CVIs. Certainly, the use of statistical tests to validate the experi-
mental results is not common practice in clustering, as opposed to
other areas such as supervised learning. The main drawback of
this work is that it compares just 2 CVIs (Davies–Bouldin and the
modified Hubert statistic). The experiment is performed in
2 parallel works of 32 and 64 synthetic datasets, 3 clustering
algorithms (single-linkage, complete-linkage and CLUSTER) and
100 runs. The datasets’ characteristics were controlled in the
generation process and they used different sizes (50 or 100
objects), dimensionality (2, 3, 4 or 5), number of clusters (2, 4,
6 or 8), sampling window (cubic or spherical) and cluster overlap.

In 1997, Bezdek et al. [29] published a paper comparing 23 CVIs
based on 3 runs of the EM algorithm and 12 synthetic datasets. The
datasets were formed by 3 or 6 Gaussian clusters and the results
were presented in tables that showed the successes of every CVI on
each dataset. Another work that compared 15 CVIs was performed
by Dimitriadou et al. [18] based on 100 runs of k-means and hard
competitive learning algorithms. The 162 datasets used in this
work were composed of binary attributes which made the experi-
ment and the results presentation somewhat different to the
previously mentioned ones.

More recently, Brun et al. [10] compared 8 CVIs using several
clustering algorithms: k-means, fuzzy c-means, SOM, single-
linkage, complete-linkage and EM. They used 600 synthetic
datasets based on 6 models with varying dimensionality
(2 or 10), cluster shape (spherical or Gaussian) and number of
clusters (2 or 4). The novelty in this work can be found in the
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comparison methodology. The authors compared the partitions
obtained by the clustering algorithms with the correct partitions
and computed an error value for each partition. Then, the
‘‘quality’’ of the CVI is measured as its correlation with the
measured error values. In this work, not just internal but also
external and relative indices are examined. The results show that
the Rand index is highly correlated with the error measure.

The mentioned correlation between the error measure and the
Rand index makes one think about the adequacy of the error as a
definitive measure. In the recent work of Gurrutxaga et al. [28] the
authors accepted that there is no single way of establishing the
quality of a partition and they proposed using one of the external
indices available—or even better, several of them. This is the first
work that clearly confronted a methodological drawback ignored by
many authors, but noticed by others [10,22,23,20]. Since the main
goal of this work was to present a modification of the traditional
methodology, they compared just 7 CVIs based on 7 synthetic and
3 real datasets and 10 runs of the k-means algorithm.

Other CVI comparisons can be found where new CVIs are
proposed, but in this case the experiment is usually limited. It is
common to find works comparing 5 or 10 CVIs on a similar
number of datasets [6,21,22,25,8,26,24].
3. Cluster validity indices

In this section we describe the 30 CVIs compared in this work.
First, to simplify and reduce the CVI description section we define
the general notation used in this paper and particular notations
used to describe several indices.

3.1. Notation

Let us define a dataset X as a set of N objects represented
as vectors in an F-dimensional space: X ¼ fx1,x2, . . . ,xNgDRF .
A partition or clustering in X is a set of disjoint clusters that
partitions X into K groups: C ¼ fc1,c2, . . . ,cKg where

S
ck ACck ¼

X,ck \ cl ¼ | 8ka l. The centroid of a cluster ck is its mean vector,
ck ¼ 1=9ck9

P
xi ACk

xi and, similarly, the centroid of the dataset is
the mean vector of the whole dataset, X ¼ 1=N

P
xi AXxi.

We will denote the Euclidean distance between objects xi and
xj as deðxi,xjÞ. We define the Point Symmetry-Distance [30]
between the object xi and the cluster ck as

dn

psðxi,ckÞ ¼ 1=2
X

minð2Þxj A ck
fdeð2ck�xi,xjÞg:

The point 2ck�xi is called the symmetric point of xi with respect
to the centroid of ck. The function

P
min can be seen as a

variation of the min function where
P

minðnÞ computes the sum
of the n lowest values of its argument. Similarly, we can define theP

max function as an analogue variation of the max function.
Finally, let us define nw since it is used by several indices. nw is

the number of object pairs in a partition that are in the same
cluster, nw ¼

P
ck ACð

9ck9
2 Þ.

3.2. Index definitions

Next, we describe the 30 CVIs compared in this work. We
focused on CVIs that can be easily evaluated by the usual
methodologies and avoided those that could lead to confusion
due to the need for a subjective decision by the experimenter.
Therefore, we have discarded some indices that needed to deter-
mine a ‘‘knee’’ in a plot — such as the Modified Hubert index [31]
— need to tune a parameter or need some kind of normalization —

such as the vSV index [32] or the Jump index [33]. We have
also avoided fuzzy indices, since our goal was to focus on
crisp clustering. In brief, we focused on crisp CVIs that allow
selection of the best partition based on its lowest or highest value.

Most of the indices estimate the cluster cohesion (within or
intra-variance) and the cluster separation (between or inter-
variance) and combine them to compute a quality measure.
The combination is performed by a division (ratio-type indices)
or a sum (summation-type indices) [25].

For each index we define an abbreviation that will be helpful
in the results section. Moreover, we accompanied each abbrevia-
tion with an up or down arrow. The down arrow denotes that a
lower value of that index means a ‘‘better’’ partition. The up arrow
means exactly the opposite.
�
 Dunn index (Dm) [13]: This index has many variants and
some of them will be described next. It is a ratio-type index
where the cohesion is estimated by the nearest neighbour
distance and the separation by the maximum cluster dia-
meter. The original index is defined as

DðCÞ ¼
minck ACfmincl AC\ck

fdðck,clÞgg

maxck ACfDðckÞg
,

where

dðck,clÞ ¼min
xi A ck

min
xj A cl

fdeðxi,xjÞg,

DðckÞ ¼ max
xi ,xj A ck

fdeðxi,xjÞg:
�
 Calinski–Harabasz (CH m) [15]: This index obtained the best
results in the work of Milligan and Cooper [20]. It is a ratio-
type index where the cohesion is estimated based on the
distances from the points in a cluster to its centroid.
The separation is based on the distance from the centroids to
the global centroid, as defined in Section 3.1. It can be defined as

CHðCÞ ¼
N�K

K�1

P
ck AC9ck9deðck ,X ÞP

ck AC

P
xi A ck

deðxi,ck Þ
:

�
 Gamma index (G k) [34]: The Gamma index is an adaptation
of Goodman and Kruskal’s Gamma index and can be
described as

GðCÞ ¼

P
ck AC

P
xi ,xj A ck

dlðxi,xjÞ

nw

N

2

� �
�nw

� � ,

where dlðxi,xjÞ denotes the number of all object pairs in X,
namely xk and xl, that fulfil two conditions: (a) xk and xl are in
different clusters, and (b) deðxk,xlÞodeðxi,xjÞ. In this case the
denominator is just a normalization factor.

�
 C-Index (CIk) [35]: This index is a type of normalized

cohesion estimator and is defined as

CIðCÞ ¼
SðCÞ�SminðCÞ

SmaxðCÞ�SminðCÞ
,

where

SðCÞ ¼
X

ck AC

X
xi ,xj A ck

deðxi,xjÞ,

SminðCÞ ¼
X

minðnwÞxi ,xj AXfdeðxi,xjÞg,

SmaxðCÞ ¼
X

maxðnwÞxi ,xj AXfdeðxi,xjÞg:
�
 Davies–Bouldin index (DBk) [14]: This is probably one of the
most used indices in CVI comparison studies. It estimates the
cohesion based on the distance from the points in a cluster to
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its centroid and the separation based on the distance between
centroids. It is defined as

DBðCÞ ¼
1

K

X
ck AC

max
cl AC\ck

SðckÞþSðclÞ

deðck ,cl Þ

� �
,

where

SðckÞ ¼ 1=9ck9
X

xi A ck

deðxi,ck Þ:
�
 Silhouette index (Silm) [36]: This index is a normalized
summation-type index. The cohesion is measured based on
the distance between all the points in the same cluster and
the separation is based on the nearest neighbour distance.
It is defined as

SilðCÞ ¼ 1=N
X

ck AC

X
xi A ck

bðxi,ckÞ�aðxi,ckÞ

maxfaðxi,ckÞ,bðxi,ckÞg
,

where

aðxi,ckÞ ¼ 1=9ck9
X

xj A ck

deðxi,xjÞ,

bðxi,ckÞ ¼ min
cl AC\ck

1=9cl9
X

xj A cl

deðxi,xjÞ

8<
:

9=
;:
�
 Graph theory based Dunn and Davies–Bouldin variations (DMSTm,
DRNGm, DGGm, DBMSTk, DBRNGk, DBGGk) [8]: These indices are
variations of Dunn and Davies–Bouldin. The variation affects how
the cohesion estimators are computed—DðckÞ for the Dunn index
and SðckÞ for the Davies–Bouldin index.
For each of the three versions — MST, RNG and GG — these two
functions are computed in the same way. First, a particular type
of graph is computed for ck, taking the objects in the cluster as
vertices and the distance between objects as the weight of each
edge. Then the largest weight is taken as the value for DðckÞ and
SðckÞ. The difference between the three variants comes from the
selected graph type. For MST a Minimum Spanning Tree is built,
for RNG a Relative Neighbourhood Graph and for GG a
Gabriel Graph.

�
 Generalized Dunn indices gD31m, gD41m, gD51m, gD33m,

gD43m, gD53mÞ [37]: All the variations are a combination of
three variants of d — separation estimator — and two
variations of D — cohesion estimator. Actually, Bezdek and
Pal [37] proposed 6�3 variants — including the original
index — but we selected those proposals that showed the
best results. Therefore we analyzed the variants 3, 4 and 5 for
d and 1 and 3 for D.

d3
ðck,clÞ ¼

1

9ck99cl9

X
xi A ck

X
xj A cl

dexi,xj,

d4
ðck,clÞ ¼ deðck ,cl Þ,

d5
ðck,clÞ ¼

1

9ck9þ9cl9

X
xi A ck

deðxi,ck Þþ
X

xj A cl

deðxj,cl Þ

0
@

1
A

and

D1
ðckÞ ¼DðckÞ,

D3
ðckÞ ¼ 2=9ck9

X
xi A ck

deðxi,ck Þ:
�
 S_Dbw index (SDbwk) [38]: This is a ratio-type index that has
a more complex formulation based on the Euclidean norm
JxJ¼ ðxT xÞ1=2, the standard deviation of a set of objects,
sðXÞ ¼ 1=9X9

P
xi AXðxi�xÞ2 and the standard deviation of a

partition, stdevðCÞ ¼ 1=K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

ck ACJsðckÞJ
q

. Its definition is

SDbwðCÞ ¼ 1=K
X

ck AC

JsðckÞJ

JsðXÞJ

þ
1

KðK�1Þ

X
ck AC

X
cl AC\ck

denðck,clÞ

maxfdenðckÞ,denðclÞg
,

where

denðckÞ ¼
X

xi A ck

f ðxi,ck Þ,

denðck,clÞ ¼
X

xi A ck[cl

f xi,
ckþcl

2

� �
,

and

fðxi,ckÞ ¼
0 if deðxi,ck Þ4stdevðCÞ,

1 otherwise:

(

�
 CS index (CSk) [6]: This index was proposed in the image
compression environment, but can be extended to any other
environment. It is a ratio-type index that estimates the
cohesion by the cluster diameters and the separation by the
nearest neighbour distance. Its definition is

CSðCÞ ¼

P
ck ACf1=9ck9

P
xi A ck

maxxj A ck
fdeðxi,xjÞggP

ck AC mincl AC\ck
fdeðck ,cl Þg

:

�
 Davies–Bouldinn (DBnk) [25]: This variation of the Davies–
Bouldin index was proposed together with an interesting
discussion about different types of CVIs. Its definition is

DBn
ðCÞ ¼ 1=K

X
ck AC

maxcl AC\ck
fSðckÞþSðclÞg

mincl AC\ck
fdeðck ,cl Þg

:

�
 Score function (SFm) [39]: This is a summation-type index
where the separation is measured based on the distance from
the cluster centroids to the global centroid and the cohesion
is based on the distance from the points in a cluster to its
centroid. It is defined as

SFðCÞ ¼ 1�
1

eebcdðCÞ þwcdðCÞ
,

where

bcdðCÞ ¼

P
ck AC9ck9deðck ,X Þ

N � K
,

wcdðCÞ ¼
X

ck AC

1=9ck9
X

xi A ck

deðxi,ck Þ:
�
 Sym-index (Symm) [30]: This index is an adaptation of the I index
[19] based on the Point Symmetry-Distance. It is defined as

SymðCÞ ¼
maxck ,cl ACfdeðck ,cl Þg

K
P

ck AC

P
xi A ck

dn

psðxi,ckÞ
:

�
 Point Symmetry-Distance based indices (SymDBk, SymDm,
Sym33m) [26]: These three indices are also based on the Point
Symmetry-Distance and modify the cohesion estimator of the
Davies–Bouldin, Dunn and generalized-Dunn (version 33)
indices.
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The SymDB index is computed as DB, but the computation of
S is redefined as follows:

SðckÞ ¼ 1=9ck9
X

xi A ck

dn

psðxi,ckÞ:

The symD index is like D, but the D function is defined as

DðckÞ ¼max
xi A ck

fdn

psðxi,ckÞg:

And finally, the Sym33 index is a modification of gD33 where
D is defined as

DðckÞ ¼ 2=9ck9
X

xi A ck

dn

psðxi,ckÞ:
�
 COP index (COPk) [40]: Although this index was first pro-
posed to be used in conjunction with a cluster hierarchy post-
processing algorithm, it can also be used as an ordinary CVI.
It is a ratio-type index where the cohesion is estimated by the
distance from the points in a cluster to its centroid and the
separation is based on the furthest neighbour distance.
Its definition is

COPðCÞ ¼
1

N

X
ck AC

9ck9
1=9ck9

P
xi A ck

deðxi,ck Þ

minxi=2ck
maxxj A ck

deðxi,xjÞ
:

�
 Negentropy increment (NIk) [23]: This is an index based on
cluster normality estimation and, therefore, is not based on
cohesion and separation estimations. It is defined as

NIðCÞ ¼ 1=2
X

ck AC

pðckÞlog9Sck
9�1=2log9SX9�

X
ck AC

pðckÞlog pðckÞ

where pðckÞ ¼ 9ck9=N, Sck
denotes the covariance matrix of

cluster ck, SX denotes the covariance matrix of the whole
dataset and 9S9 denotes the determinant of a covariance
matrix. Although the authors proposed the index as defined
above, they later proposed a correction due to the poor results
obtained. Nevertheless, we will use the index in its original
form since the correction does not meet the CVI selection
criterion used for this work.

�
 SV-Index (SVm) [24]: This ratio-type index is one of the most

recent CVIs compared in this work. It estimates the separa-
tion by the nearest neighbour distance and the cohesion is
based on the distance from the border points in a cluster to its
centroid. It is defined as

SVðCÞ ¼

P
ck AC mincl AC\ck

fdeðck ,cl gP
ck AC10=9ck9

P
maxxi A ck

ð0:19ck9Þfdeðxi,ck g
:

�
 OS-Index (OSm) [24]: This is another recent ratio-type index
proposed by Žalik and Žalik [24] where a more complex
separation estimator is used. It is defined as

OSðCÞ ¼

P
ck AC

P
xi A ck

ovðxi,ckÞP
ck AC10=9ck9

P
maxxi A ck

ð0:19ck9Þfdeðxi,ck g
,

where

ovðxi,ckÞ ¼

aðxi,ckÞ

bðxi,ckÞ
if

bðxi,ckÞ�aðxi,ckÞ

bðxi,ckÞþaðxi,ckÞ
o0:4,

0 otherwise,

8><
>:

and

aðxi,ckÞ ¼ 1=9ck9
X

deðxi,xjÞ,

xj A ck
bðxi,ckÞ ¼ 1=9ck9
X

min
xj=2ck

ð9ck9Þfdeðxi,xjÞg:
4. Experimental setup

In this section we describe the experiment performed to
compare the CVIs listed in the previous section. As shown in
Section 2, there are many possible experimental designs for such
a comparison. Since we want to compare the CVIs in a wide
variety of configurations we designed an experiment with several
factors. Unfortunately, due to combinatorial explosion we had to
limit each factor to just a few levels and this finally led us to an
experiment with 6480 configurations.

The comparative methodology that we used is a variation of
the traditional problem of estimating the number of clusters of a
dataset. The usual approach is to run a clustering algorithm over a
dataset with a set of different values for the k parameter — the
number of clusters of the computed partition — obtaining a set of
different partitions. Then, the evaluated CVI is computed for all
the partitions. The number of clusters in the partition obtaining
the best results is considered the prediction of the CVI for that
particular dataset. If this prediction matches the true number of
clusters, the prediction is considered successful.

The variation we used modifies the problem so that the CVIs
are not used to estimate the correct number of clusters. They are
used to predict which is the ‘‘best’’ partition in the mentioned set
of partitions. The ‘‘best’’ partition is defined as the one that is the
most similar to the correct one—measured by a partition simi-
larity measure—which is not always the one with the correct
number of clusters. For a formal and more detailed description
see [28]. In order to avoid the possible bias introduced by the
selection of a particular partition similarity measure, we repli-
cated all the experiments using three partition similarity mea-
sures: Adjusted Rand [31], Jaccard [41] and Variation of
Information [42].

We used three clustering algorithms to compute partitions
from the datasets: k-means, Ward and average-linkage [2]. These
are well known and it is easy to obtain different partitions by
modifying the parameter that controls the number of clusters of
the output partition. Each algorithm was used to compute a set of
partitions with the number of clusters ranging from 2 to

ffiffiffiffi
N
p

,
where N is the number of objects in the dataset. In the case of the
real datasets, the number of clusters in a partition was limited to
25 to avoid computational problems with large datasets.

As usual, we used several synthetically generated datasets for
the CVI evaluation. Furthermore, we also compared them using 20
real datasets drawn from the UCI repository [43]. In any case, it is
important to note that results based on real datasets should be
analyzed with caution since these datasets are usually intended to
be used with supervised learning and, therefore, they are not
always well adapted to the clustering problem [9]. On the
contrary, the synthetic datasets avoid many problems found with
real datasets. For instance, in synthetic datasets categories exists
independent of human experience and their characteristics can be
easily controlled by the experiment designer.

The synthetic datasets were created to cover all the possible
combinations of five factors: number of clusters (K), dimension-
ality (dim), cluster overlap (ov), cluster density (den) and noise
level (nl). We defined two types of overlap: strict, meaning that
the ov overlap level must be exactly satisfied, and bounded,
meaning that ov is the maximum allowed overlap.

A fixed hypercubic sampling window is defined to create all
the synthetic datasets. The window is defined by the ð0,0, . . . ,0Þ
and ð50,50, . . . ,50Þ coordinates. In a similar way, a reduced sampling



Table 1
Values of the parameters used in the synthetic

dataset generation step.

Param. Value

nmin 100

K 2, 4, 8

dim 2, 4, 8

ov 1.5 (strict), 5 (bounded)

den 1, 4

nl 0, 0.1

Fig. 1. Two-dimensional plots of four synthetic datasets used in the experiment.

(a) Shows a ‘‘neutral’’ dataset with no cluster overlap, no density asymmetry and

no noise. (b) Shows a similar dataset with high cluster overlap. (c) Shows a dataset

with cluster density asymmetry. (d) Shows a dataset with noise.

Table 2
The characteristics of the real datasets drawn from the UCI repository.

Dataset No. of objects Features Classes

Breast tissue 106 9 6

Breast Wisconsin 569 30 2

Ecoli 336 7 8

Glass 214 9 7

Haberman 306 3 2

Ionosphere 351 34 2

Iris 150 4 3

Movement libras 360 90 15

Musk 476 166 2

Parkinsons 195 22 2

Segmentation 2310 19 7

Sonar all 208 60 2

Spectf 267 44 2

Transfusion 748 4 2

Vehicle 846 18 4

Vertebral column 310 6 3

Vowel context 990 10 11

Wine 178 13 3

Winequality red 1599 11 6

Yeast 1484 8 10
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window is defined by the ð3,3, . . . ,3Þ and ð47,47, . . . ,47Þ coordi-
nates. Then, the centre for the first cluster, c0, is randomly drawn
in the reduced sampling window based on a uniform distribution.
The first cluster is created by randomly drawing nmin � den points
following a multivariate normal distribution of dim dimensions
with mean c0 and the identity as covariance matrix. All points
located outside the sampling window are removed and new
points are drawn to replace them.

The remaining clusters will have nmin points and this produces
a density asymmetry when dena1. This occurs because a
different number of points will be located in the same approx-
imate volume.

In particular, we build the remaining K�1 clusters as follows:
if the overlap is bounded, the centre of the cluster, ci, is drawn
uniformly from the reduced sampling window. Otherwise, a
previously created cluster centre, ck, is randomly selected and
the new cluster centre, ci, is set to a random point located at a
distance of 2� ov from ck. In any case, if deðci,clÞo2� ov 8claci

the cluster centre is discarded and a new one is selected. Once the
cluster centre has been defined the cluster is built by drawing nmin

points in the same way as we did for the first cluster.
Finally, when all the clusters have been built, nl� N0 points are

randomly created following a uniform distribution in the sam-
pling window, where N0 is the number of non-noise points in the
dataset, N0 ¼ nmin � ðdenþK�1Þ.

The values of the parameters used to create the synthetic
datasets are shown in Table 1, making 72 different configurations.
As we created 10 datasets from each configuration we used 720
synthetic datasets. Multiplying this value by three partition
similarity measures and three clustering algorithms we obtain
the 6480 configurations previously mentioned. Notice that the
nmin parameter ensures that every cluster is composed of at least
100 objects.

Fig. 1 shows an example of 4 two-dimensional datasets we
have used. In the figure we can see how the different values of the
generation parameters affects the point distribution in the data-
sets. Fig. 1a shows a dataset with four clusters, with no cluster
overlap, no noise and no density asymmetry. The other three plots
show dataset with similar characteristics except for overlap,
density and noise parameters.

The 20 real datasets and their main characteristics are shown
in Table 2. In this case the experiment is based on 180
configurations—20 datasets, 3 algorithms and 3 partition simi-
larity measures.

Including synthetic and real datasets, and taking into account
the different number of partitions computed for each dataset,
each of the 30 CVIs was computed for 156 069 partitions.
5. Results

One of the goals of this work is to present the results in such a
way that readers can focus on the particular configurations they
are interested in. However, the vast amount of results obtained
prohibits all of them being shown in this paper. Therefore, we
focus here on the overall results; drawing some important
conclusions. However, all the detailed results are available in
the web.

In this section we first describe the results obtained for the
synthetic datasets and then the results for the real datasets are
described. Finally, we present a brief discussion on the use of
statistical analysis in clustering and we show the conclusions we
drew by applying some statistical tests to the results.

5.1. Synthetic datasets

The overall results for the synthetic datasets are shown in
Fig. 2. The figure shows the percentage of correct guesses
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Fig. 2. Overall results for the experiment with synthetic datasets.
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Fig. 3. Results for synthetic datasets broken down by partition similarity measure.

O. Arbelaitz et al. / Pattern Recognition 46 (2013) 243–256 249
(successes) achieved by each CVI, which are sorted by the number
of successes. Notice that this percentage refers to the 6480
configurations. The graph shows that Silhouette achieves the best
overall results and is the only one that exceeds the 50% score. DBn

and CH also show a good result, with a success rate beyond 45%.
It is also noticeable that in most cases variations of a CVI

behave quite similarly; they appear in contiguous positions in the
figure. The clearest cases are the generalized Dunn indices that
use D3 as cohesion estimator — gD33, gD43 and gD53 — and the
graph theory based Dunn indices — DMST , DRNG and DGG.

Next we will show a similar graph for each experimental
factor. In this case the value of each CVI is shown for each value of
the analyzed factor. We will keep the CVI order shown in Fig. 2, so
a decreasing graph will denote that the analyzed factor does not
change the overall ranking.

First of all, let us focus on the graph corresponding to the
partition similarity measure. Remind that this is a parameter of
the validation methodology we have used (see Section 4). In Fig. 3
we can see that the selected partition similarity measure does not
affect the results. This result suggests that the CVI comparison is
not affected by the particular selection of a parameter of the
evaluation methodology and, therefore, we can be confident of
the results. Also notice that although Adjusted Rand and Jaccard
show very similar results the use of the VI partition similarity
measure produces slightly higher success rates.

In the following figures a similar breakdown can be found with
regard to the characteristics of the datasets. In Fig. 4 we can see
how the number of clusters of the datasets affects the results. As
expected, all the CVIs obtain better results with fewer
clusters—average result for k¼2 drops from 50.2% to 30.7%
(k¼4) and 24.8% (k¼8). We can also see that for high values of
this parameter the differences between the CVIs are reduced.
Furthermore, some indices, such as COP, show little sensitivity to
this parameter making it the best CVI for k¼8.

With respect to dimensionality (see Fig. 5), the results show
that the difficulty imposed by an increment in the number of
dimensions does not severely affect the behaviour of the
CVIs—except for NI. Moreover, some indices, such as Sym, show
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Fig. 4. Results for synthetic datasets broken down by number of clusters.
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Fig. 5. Results for synthetic datasets broken down by dimensionality.
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a better behaviour for datasets with higher dimensionality.
Silhouette also achieves the best results for every value analyzed
for this parameter.

Let us now focus on the results shown in Fig. 6. This graph
shows that, as expected, datasets with no overlapping clusters
lead to better CVI success rates. The average result decreases from
52.9% to 17.6% when well separated clusters are replaced by
overlapped clusters. The graph also shows that although this
parameter does not severely affect the overall trend, some CVIs
are more hardly affected by cluster overlap, e.g. DB, COP and
SymDB. Some others, such as G, CI and OS, seem not to work at all
when clusters overlap.

With respect to the density of the clusters, Fig. 7 shows that
having a cluster four times denser than the others, does not
severely affect the CVIs. It seems that the best behaving indices
are quite insensitive to this parameter while the rest show a
better result when density heterogeneity is present. Silhouette is
again, clearly, the CVI showing best results.
Noise level, the last dataset characteristic analyzed in this
work, has a major impact on the scores of the CVIs (Fig. 8). In fact,
the scores in noisy environments are on average three times
lower than they are when no noise is present. Silhouette, and
mostly SDbw, are the main exception to this rule since they show
similar score values for noisy and noiseless environments.
Besides, the overall trend is not always followed and CH is the
CVI that achieves the best results when no noise is present.

Finally, Fig. 9 shows how the clustering algorithm used in the
experiment affects the scores of the indices evaluated. Although
we cannot find a clear pattern, it seems that the overall compara-
tive results are not severely affected since the decreasing pattern
of the graph is somehow maintained. Most of the CVIs obtain
their worst results for the k-means algorithm, but there are some
exceptions where the opposite holds—COP, G, CI and OS are the
most remarkable examples. Silhouette is again the one achieving
the best results for hierarchical algorithms, but CH is the best CVI
when k-means is used as clustering algorithm.
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Fig. 6. Results for synthetic datasets broken down by cluster overlap.
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Fig. 7. Results for synthetic datasets broken down by density.
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5.2. Real datasets

In this section we show the results obtained for 20 real
datasets following a similar style to the one we used for synthetic
datasets. Obviously, since we do not have control over the dataset
design the number of experimental factors is reduced to 2:
partition similarity measure and clustering algorithms.

First, in Fig. 10 we show the overall results for real datasets. A
quick comparison to the overall results for the synthetic datasets
(Fig. 2) shows that the results are qualitatively similar. Most of
CVIs that obtained worst results with synthetic datasets are also
in the tail of the ranking in the figure for real datasets. Focusing
on the head of the ranking we can see that the generalized Dunn
indices — gD33, gD43 and gD53 — remain in a similar position;
SF, graph theory based Dunn and COP improve their position; and
Silhouette, DBn and CH go down the ranking. Considering these
results we can say that the mentioned generalizations of the
Dunn index show the steadiest results.

Returning to the two experimental factors involved in the
experiments with real datasets, in Fig. 11 we show the results
broken down by partition similarity measure. We can see that in
this case it seems that the partition similarity measure selected
can affect the results. Although Jaccard and VI follow the overall
pattern the Adjusted Rand index does not. Furthermore, it is clear
that in every case the average scores are much lower when
Adjusted Rand is used, dropping from 39.1% (VI) or 31.1%
(Jaccard) to 10.0%.

With regard to the clustering algorithm used (see Fig. 12) the
results are contradictory. On the one hand, if we focus on k-means
and Ward, it seems that this factor does not severely affect the
results. On the other hand, results for average-linkage reduce the
differences between CVIs and do not follow the overall results. In
this case, Sym shows the best results while SF achieves the
highest success rates for k-means and Ward.

5.3. Statistical tests

Although the assessment of the experimental results using
statistical tests is a widely studied technique in machine learning,
it is rarely used in the clustering area. Among the works cited in



No noise
10%

S
uc

ce
ss

 ra
te

 (%
)

0
10

20
30

40
50

60
70

S
il

D
B

*
C

H
gD

33
gD

43
gD

53
S

F
D

B
S

ym
33

C
O

P
D

M
S

T
D

R
N

G
D

G
G

S
D

bw
S

ym
D

B
M

S
T

D
B

R
N

G
gD

41
S

ym
D

B
gD

51
D

B
G

G
gD

31
S

V
C

S D
S

ym
D

G C
I

O
S N
I

Fig. 8. Results for synthetic datasets broken down by noise.
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Fig. 9. Results for synthetic datasets broken down by clustering algorithm.
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Section 2 just Dubes [27] used a statistical test to assess the
influence of each experimental factor on the results obtained.
However, in our case we focused on checking whether the
observed differences between CVIs were statistically significant
or not.

We argue that an effort should be made by the clustering and
statistics communities to adapt these tools to clustering and
effectively introduce them in the area. These types of tests would
be even more important in extensive comparative works such as
the one described in this paper. Therefore, although it is not the
goal of this work, we propose a possible direct adaptation of a
comparison method used in supervised learning. This method has
been chosen due to the proximity of the supervised learning area
to clustering and because the use of statistical tests in this area
has been widely studied [44–46].

We next describe the method and the proposed adaptation.
Then, we conclude this section by discussing the results obtained
when we applied the proposed tests to the results obtained in the
experiment carried out in our work to compare the performance
of CVIs.

We based our statistical method on a common scenario in
supervised learning where classification algorithms are com-
pared. In this case it is usual to run the algorithms on several
datasets and to compute a ‘‘quality’’ estimate, such as the
accuracy or the AUC value, for each algorithm and database pair.
A usual approach is to test the quality values achieved by all the
algorithms for each dataset independently [45]. However, Dems̆ar
[44] recently argued that a single test based on all the algorithms
and all the datasets is a better choice. One of the advantages of
this method is that the different values compared in the statistical
test are independent, since they come from different datasets.

We have adapted the method proposed by Dems̆ar [44] and
subsequently extended by Garcı́a and Herrera [46] to CVI com-
parisons. In brief, we simply replaced the classification algorithms
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Fig. 10. Overall results for real datasets.
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Fig. 11. Results for real datasets broken down by partition similarity measure.
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by CVIs. However, this is not enough, since in our experiments we
obtained a Boolean value for each CVI-configuration pair instead
of a ‘‘quality’’ estimate. Moreover, the configurations we obtained
by varying the clustering algorithm and partition similarity
measure are based on the same dataset, so it can be argued that
they are not sufficiently independent.

Our solution was to add for each dataset the number of
successes each CVI obtained for each clustering algorithm–parti-
tion similarity measure pair. Moreover, in order to obtain a more
precise estimate, we also added the number of successes obtained
in every run—remember that we created 10 datasets for each
combination of dataset characteristics. We thus obtained 72
values ranging from 0 to 90 for each CVI, that gave us a ‘‘quality’’
estimate for independent datasets. Finally, we applied the statis-
tical tests with no further modifications.

The tests we used were designed for comparisons of multiple
classifiers (CVIs) in an all-to-all way. We used the Friedman test
to check if any statistical difference existed and the Nemenyi test
for pairwise CVI comparison [44]. Furthermore, we performed
additional pairwise CVI comparisons with the Shaffer test as
suggested by Garcı́a and Herrera [46]. In both cases we performed
the tests with 5% and 10% confidence level.

The main conclusion obtained by applying the above tests is
that there are undoubtedly statistically significant differences
between the 30 CVIs, as the Friedman test categorically shows
with a p-value on the order of 10�80. All the performed pair-wise
comparisons show a very similar result, so in Fig. 13 we only
show the results for the most powerful test that we
performed—Shaffer with a confidence level of 10%.

Since the used statistical tests are based on average rank values,
the figure shows all the CVIs sorted by average rank. The results are
very similar to those based on average scores (Fig. 2), but there are
a couple of differences that should be underlined. First of all, the
CVI order slightly changed, but most of the movements occurred in
the central part of the ranking. Secondly, the CVIs formed quite
well separated groups. In the first group there are 10 indices with
an average rank between 9 and 13. Taking into account variations
of a CVI as a single one, the group contains six indices: Silhouette,
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Fig. 12. Results for real datasets broken down by clustering algorithm.

Fig. 13. Results for Shaffer test with a significance level of 10%.
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Davies–Bouldin, Calinski–Harabasz, generalized Dunn, COP and
SDbw. There is also a crowded central group with 14 CVIs and
average rank between 14 and 17; and finally, a group of six indices
with average rank between 19 and 23.

The bars in the figure group the indices that do not show
statistically significant differences. The highly overlapped bars
difficult the task of drawing categorical conclusions, but on the
following we resume the information in the graph and remark the
most interesting points:
�
 No significant difference exists between CVIs in the same
group.

�
 All the CVIs in the first group perform significantly better than

the CVIs in the third group.

�
 The best behaving CVI, Sil, obtains significantly better results

than all the CVIs in the second group, except Sym.

�
 All the CVIs in the second group, except Sym and SymDB, have

no statistically significant differences with at least one CVI in
the third group.

In conclusion, the data does not show sufficiently strong
evidence to distinguish a small set of CVIs as being significantly
better than the rest. Nevertheless, there is a group of about 10
indices that seems to be recommendable and Silhouette, Davies–
Bouldin* and Calinski–Harabasz are in the top of this group. We
have also performed statistical test to the experiment subsets
shown in the results section, but no CVI can be considered
significantly better than the others in any case.
6. Conclusions and further work

In this paper we presented a comparison of 30 cluster validity
indices on an extensive set of configurations. It is, to the best of
our knowledge, the most extensive CVI comparison ever pub-
lished. Moreover, it is the first non-trivial CVI comparison
that uses the methodological correction recently proposed by
Gurrutxaga et al. [28].

Due to the huge size of the experiment we have not been able to
show all the results obtained. However, the interested reader can
access them in electronic format in the web. The great advantage of
this is that readers can focus on the results for the configurations
they are interested in and we therefore provide a tool to enable
them to select the most suitable CVIs for their particular application.
This procedure is very recommendable since there is not a single CVI
that showed clear advantage over the rest in every context, although
Silhouette index obtained the best results in many of them.

We next summarize the main conclusions we drew from the CVI
comparison. First, we observed that some CVIs appear to be more
suitable for certain configurations, although the results were not
conclusive. Furthermore, the overall trend never changed dramatically
when we focused on a particular factor. Another fact worth noting is
that the results for real and synthetic datasets are qualitatively similar,
although they show disagreements for some particular indices.

With regard to the experimental factors, noise and cluster
overlap had the greatest impact on CVI performance. The number
of successes is dramatically reduced when noise is present or
clusters overlap. In particular, the inclusion of 10% random noise
reduces the average score to a third part. A very similar score
reduction was found when the clusters were moved closer so they
highly overlapped. Another remarkable and surprising fact is that
some indices showed better results in (a priori) more complex
configurations. For example, some indices improved their results
when the dimensionality of the datasets increased or the homo-
geneity of the cluster densities disappeared.

Finally, we confirmed that the selection of a partition similar-
ity measure that enables correction of the experimental metho-
dology is not a critical factor. Nevertheless, it is clear that it can
produce some variations in the results, so our suggestion is to use
several of them to obtain more robust results. Our work shows
that CVIs appear to be better adapted to the VI and Jaccard
partition similarity measures than to Adjusted Rand.
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An statistical significance analysis of the results showed that
there are three main groups of indices and the indices in the first
group — Silhouette, Davies–Bouldin, Calinski–Harabasz, general-
ized Dunn, COP and SDbw — behave better than indices in the last
group — Dunn and its Point Symmetry-Distance based variation,
Gamma, C-Index, Negentropy increment and OS-Index — being
the differences statistically significant.

This work also raises some questions and, therefore, suggests
some future work. It is obvious that this type of work can always
be improved. Although we consider that we performed an
extensive comparison there is room for extending it to include
more CVIs, datasets, clustering algorithms and so on. In this
context noise and overlap would appear to be the most interest-
ing factors to analyse in greater depth. We also limited this work
to crisp clustering, so a fuzzy CVI comparison would be a natural
continuation. The analysis of some other kind of indices, such as
stability based ones, would also be of great interest.

Finally, we argued that statistical tests are a very valuable tool
in data mining and that an effort should be made to use them
more widely in clustering. We adapted a method widely accepted
in the supervised learning area for our work, but this is just a first
approach to the problem and there is a vast field of theoretical
research to be addressed.
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