
3
Subsetting

R’s subsetting operators are powerful and fast. Mastery of subsetting
allows you to succinctly express complex operations in a way that few
other languages can match. Subsetting is hard to learn because you need
to master a number of interrelated concepts:

• The three subsetting operators.

• The six types of subsetting.

• Important differences in behaviour for different objects (e.g., vectors,
lists, factors, matrices, and data frames).

• The use of subsetting in conjunction with assignment.

This chapter helps you master subsetting by starting with the simplest
type of subsetting: subsetting an atomic vector with [. It then gradu-
ally extends your knowledge, first to more complicated data types (like
arrays and lists), and then to the other subsetting operators, [[and
$. You’ll then learn how subsetting and assignment can be combined
to modify parts of an object, and, finally, you’ll see a large number of
useful applications.

Subsetting is a natural complement to str(). str() shows you the struc-
ture of any object, and subsetting allows you to pull out the pieces that
you’re interested in.

Quiz

Take this short quiz to determine if you need to read this chapter. If the
answers quickly come to mind, you can comfortably skip this chapter.
Check your answers in Section 3.5.

1. What is the result of subsetting a vector with positive integers,
negative integers, a logical vector, or a character vector?

33

© 2015 by Taylor & Francis Group, LLC

34 Advanced R

2. What’s the difference between [, [[, and $ when applied to a
list?

3. When should you use drop = FALSE?
4. If x is a matrix, what does x[] <- 0 do? How is it different to

x <- 0?
5. How can you use a named vector to relabel categorical vari-

ables?

Outline

• Section 3.1 starts by teaching you about [. You’ll start by learning the
six types of data that you can use to subset atomic vectors. You’ll then
learn how those six data types act when used to subset lists, matrices,
data frames, and S3 objects.

• Section 3.2 expands your knowledge of subsetting operators to include
[[and $, focussing on the important principles of simplifying vs. pre-
serving.

• In Section 3.3 you’ll learn the art of subassignment, combining subset-
ting and assignment to modify parts of an object.

• Section 3.4 leads you through eight important, but not obvious, appli-
cations of subsetting to solve problems that you often encounter in a
data analysis.

3.1 Data types

It’s easiest to learn how subsetting works for atomic vectors, and then
how it generalises to higher dimensions and other more complicated ob-
jects. We’ll start with [, the most commonly used operator. Section 3.2
will cover [[and $, the two other main subsetting operators.

3.1.1 Atomic vectors

Let’s explore the different types of subsetting with a simple vector, x.

x <- c(2.1, 4.2, 3.3, 5.4)

© 2015 by Taylor & Francis Group, LLC

Subsetting 35

Note that the number after the decimal point gives the original position
in the vector.
There are five things that you can use to subset a vector:

• Positive integers return elements at the specified positions:

x[c(3, 1)]

#> [1] 3.3 2.1

x[order(x)]

#> [1] 2.1 3.3 4.2 5.4

Duplicated indices yield duplicated values

x[c(1, 1)]

#> [1] 2.1 2.1

Real numbers are silently truncated to integers

x[c(2.1, 2.9)]

#> [1] 4.2 4.2

• Negative integers omit elements at the specified positions:

x[-c(3, 1)]

#> [1] 4.2 5.4

You can’t mix positive and negative integers in a single subset:

x[c(-1, 2)]

#> Error: only 0's may be mixed with negative subscripts

• Logical vectors select elements where the corresponding logical value
is TRUE. This is probably the most useful type of subsetting because
you write the expression that creates the logical vector:

x[c(TRUE, TRUE, FALSE, FALSE)]

#> [1] 2.1 4.2

x[x > 3]

#> [1] 4.2 3.3 5.4

If the logical vector is shorter than the vector being subsetted, it will
be recycled to be the same length.

x[c(TRUE, FALSE)]

#> [1] 2.1 3.3

Equivalent to

x[c(TRUE, FALSE, TRUE, FALSE)]

#> [1] 2.1 3.3

© 2015 by Taylor & Francis Group, LLC

36 Advanced R

A missing value in the index always yields a missing value in the out-
put:

x[c(TRUE, TRUE, NA, FALSE)]

#> [1] 2.1 4.2 NA

• Nothing returns the original vector. This is not useful for vectors but
is very useful for matrices, data frames, and arrays. It can also be
useful in conjunction with assignment.

x[]

#> [1] 2.1 4.2 3.3 5.4

• Zero returns a zero-length vector. This is not something you usually
do on purpose, but it can be helpful for generating test data.

x[0]

#> numeric(0)

If the vector is named, you can also use:

• Character vectors to return elements with matching names.

(y <- setNames(x, letters[1:4]))

#> a b c d

#> 2.1 4.2 3.3 5.4

y[c("d", "c", "a")]

#> d c a

#> 5.4 3.3 2.1

Like integer indices, you can repeat indices

y[c("a", "a", "a")]

#> a a a

#> 2.1 2.1 2.1

When subsetting with [names are always matched exactly

z <- c(abc = 1, def = 2)

z[c("a", "d")]

#> <NA> <NA>

#> NA NA

© 2015 by Taylor & Francis Group, LLC

Subsetting 37

3.1.2 Lists

Subsetting a list works in the same way as subsetting an atomic vector.
Using [will always return a list; [[and $, as described below, let you
pull out the components of the list.

3.1.3 Matrices and arrays

You can subset higher-dimensional structures in three ways:

• With multiple vectors.
• With a single vector.
• With a matrix.

The most common way of subsetting matrices (2d) and arrays (>2d)
is a simple generalisation of 1d subsetting: you supply a 1d index for
each dimension, separated by a comma. Blank subsetting is now useful
because it lets you keep all rows or all columns.

a <- matrix(1:9, nrow = 3)

colnames(a) <- c("A", "B", "C")

a[1:2,]

#> A B C

#> [1,] 1 4 7

#> [2,] 2 5 8

a[c(T, F, T), c("B", "A")]

#> B A

#> [1,] 4 1

#> [2,] 6 3

a[0, -2]

#> A C

By default, [will simplify the results to the lowest possible dimension-
ality. See Section 3.2.1 to learn how to avoid this.

Because matrices and arrays are implemented as vectors with special
attributes, you can subset them with a single vector. In that case, they
will behave like a vector. Arrays in R are stored in column-major order:

(vals <- outer(1:5, 1:5, FUN = "paste", sep = ","))

#> [,1] [,2] [,3] [,4] [,5]

© 2015 by Taylor & Francis Group, LLC

38 Advanced R

#> [1,] "1,1" "1,2" "1,3" "1,4" "1,5"

#> [2,] "2,1" "2,2" "2,3" "2,4" "2,5"

#> [3,] "3,1" "3,2" "3,3" "3,4" "3,5"

#> [4,] "4,1" "4,2" "4,3" "4,4" "4,5"

#> [5,] "5,1" "5,2" "5,3" "5,4" "5,5"

vals[c(4, 15)]

#> [1] "4,1" "5,3"

You can also subset higher-dimensional data structures with an integer
matrix (or, if named, a character matrix). Each row in the matrix
specifies the location of one value, where each column corresponds to a
dimension in the array being subsetted. This means that you use a 2
column matrix to subset a matrix, a 3 column matrix to subset a 3d
array, and so on. The result is a vector of values:

vals <- outer(1:5, 1:5, FUN = "paste", sep = ",")

select <- matrix(ncol = 2, byrow = TRUE, c(

1, 1,

3, 1,

2, 4

))

vals[select]

#> [1] "1,1" "3,1" "2,4"

3.1.4 Data frames

Data frames possess the characteristics of both lists and matrices: if you
subset with a single vector, they behave like lists; if you subset with two
vectors, they behave like matrices.

df <- data.frame(x = 1:3, y = 3:1, z = letters[1:3])

df[df$x == 2,]

#> x y z

#> 2 2 2 b

df[c(1, 3),]

#> x y z

#> 1 1 3 a

#> 3 3 1 c

There are two ways to select columns from a data frame

© 2015 by Taylor & Francis Group, LLC

Subsetting 39

Like a list:

df[c("x", "z")]

#> x z

#> 1 1 a

#> 2 2 b

#> 3 3 c

Like a matrix

df[, c("x", "z")]

#> x z

#> 1 1 a

#> 2 2 b

#> 3 3 c

There's an important difference if you select a single

column: matrix subsetting simplifies by default, list

subsetting does not.

str(df["x"])

#> 'data.frame': 3 obs. of 1 variable:

#> $ x: int 1 2 3

str(df[, "x"])

#> int [1:3] 1 2 3

3.1.5 S3 objects

S3 objects are made up of atomic vectors, arrays, and lists, so you can
always pull apart an S3 object using the techniques described above and
the knowledge you gain from str().

3.1.6 S4 objects

There are also two additional subsetting operators that are needed for
S4 objects: @ (equivalent to $), and slot() (equivalent to [[). @ is more
restrictive than $ in that it will return an error if the slot does not exist.
These are described in more detail in Section 7.3.

3.1.7 Exercises

1. Fix each of the following common data frame subsetting er-
rors:

© 2015 by Taylor & Francis Group, LLC

40 Advanced R

mtcars[mtcars$cyl = 4,]

mtcars[-1:4,]

mtcars[mtcars$cyl <= 5]

mtcars[mtcars$cyl == 4 | 6,]

2. Why does x <- 1:5; x[NA] yield five missing values? (Hint:
why is it different from x[NA_real_]?)

3. What does upper.tri() return? How does subsetting a matrix
with it work? Do we need any additional subsetting rules to
describe its behaviour?

x <- outer(1:5, 1:5, FUN = "*")

x[upper.tri(x)]

4. Why does mtcars[1:20] return a error? How does it differ
from the similar mtcars[1:20,]?

5. Implement your own function that extracts the diagonal en-
tries from a matrix (it should behave like diag(x) where x is
a matrix).

6. What does df[is.na(df)] <- 0 do? How does it work?

3.2 Subsetting operators

There are two other subsetting operators: [[and $. [[is similar to [,
except it can only return a single value and it allows you to pull pieces
out of a list. $ is a useful shorthand for [[combined with character
subsetting.

You need [[when working with lists. This is because when [is applied
to a list it always returns a list: it never gives you the contents of the
list. To get the contents, you need [[:

“If list x is a train carrying objects, then x[[5]] is the object in car
5; x[4:6] is a train of cars 4-6.”
— @RLangTip

Because it can return only a single value, you must use [[with either a
single positive integer or a string:

© 2015 by Taylor & Francis Group, LLC

Subsetting 41

a <- list(a = 1, b = 2)

a[[1]]

#> [1] 1

a[["a"]]

#> [1] 1

If you do supply a vector it indexes recursively

b <- list(a = list(b = list(c = list(d = 1))))

b[[c("a", "b", "c", "d")]]

#> [1] 1

Same as

b[["a"]][["b"]][["c"]][["d"]]

#> [1] 1

Because data frames are lists of columns, you can use [[to extract a
column from data frames: mtcars[[1]], mtcars[["cyl"]].

S3 and S4 objects can override the standard behaviour of [and [[so
they behave differently for different types of objects. The key difference
is usually how you select between simplifying or preserving behaviours,
and what the default is.

3.2.1 Simplifying vs. preserving subsetting

It’s important to understand the distinction between simplifying and
preserving subsetting. Simplifying subsets returns the simplest possible
data structure that can represent the output, and is useful interactively
because it usually gives you what you want. Preserving subsetting keeps
the structure of the output the same as the input, and is generally better
for programming because the result will always be the same type. Omit-
ting drop = FALSE when subsetting matrices and data frames is one of
the most common sources of programming errors. (It will work for your
test cases, but then someone will pass in a single column data frame and
it will fail in an unexpected and unclear way.)

Unfortunately, how you switch between simplifying and preserving dif-
fers for different data types, as summarised in the table below.

Simplifying Preserving

Vector x[[1]] x[1]

List x[[1]] x[1]

© 2015 by Taylor & Francis Group, LLC

42 Advanced R

Simplifying Preserving

Factor x[1:4, drop = T] x[1:4]

Array x[1,] or x[, 1] x[1, , drop = F] or x[, 1, drop = F]

Data frame x[, 1] or x[[1]] x[, 1, drop = F] or x[1]

Preserving is the same for all data types: you get the same type of
output as input. Simplifying behaviour varies slightly between different
data types, as described below:

• Atomic vector: removes names.

x <- c(a = 1, b = 2)

x[1]

#> a

#> 1

x[[1]]

#> [1] 1

• List: return the object inside the list, not a single element list.

y <- list(a = 1, b = 2)

str(y[1])

#> List of 1

#> $ a: num 1

str(y[[1]])

#> num 1

• Factor: drops any unused levels.

z <- factor(c("a", "b"))

z[1]

#> [1] a

#> Levels: a b

z[1, drop = TRUE]

#> [1] a

#> Levels: a

• Matrix or array: if any of the dimensions has length 1, drops that
dimension.

© 2015 by Taylor & Francis Group, LLC

Subsetting 43

a <- matrix(1:4, nrow = 2)

a[1, , drop = FALSE]

#> [,1] [,2]

#> [1,] 1 3

a[1,]

#> [1] 1 3

• Data frame: if output is a single column, returns a vector instead of
a data frame.

df <- data.frame(a = 1:2, b = 1:2)

str(df[1])

#> 'data.frame': 2 obs. of 1 variable:

#> $ a: int 1 2

str(df[[1]])

#> int [1:2] 1 2

str(df[, "a", drop = FALSE])

#> 'data.frame': 2 obs. of 1 variable:

#> $ a: int 1 2

str(df[, "a"])

#> int [1:2] 1 2

3.2.2 $

$ is a shorthand operator, where x$y is equivalent to x[["y", exact

= FALSE]]. It’s often used to access variables in a data frame, as in
mtcars$cyl or diamonds$carat.

One common mistake with $ is to try and use it when you have the name
of a column stored in a variable:

var <- "cyl"

Doesn't work - mtcars$var translated to mtcars[["var"]]

mtcars$var

#> NULL

Instead use [[

mtcars[[var]]

#> [1] 6 6 4 6 8 6 8 4 4 6 6 8 8 8 8 8 8 4 4 4 4 8 8 8 8 4 4 4 8

#> [30] 6 8 4

There’s one important difference between $ and [[. $ does partial match-
ing:

© 2015 by Taylor & Francis Group, LLC

44 Advanced R

x <- list(abc = 1)

x$a

#> [1] 1

x[["a"]]

#> NULL

If you want to avoid this behaviour you can set the global option warn-

PartialMatchDollar to TRUE. Use with caution: it may affect behaviour
in other code you have loaded (e.g., from a package).

3.2.3 Missing/out of bounds indices

[and [[differ slightly in their behaviour when the index is out of bounds
(OOB), for example, when you try to extract the fifth element of a length
four vector, or subset a vector with NA or NULL:

x <- 1:4

str(x[5])

#> int NA

str(x[NA_real_])

#> int NA

str(x[NULL])

#> int(0)

The following table summarises the results of subsetting atomic vectors
and lists with [and [[and different types of OOB value.

Operator Index Atomic List

[OOB NA list(NULL)

[NA_real_ NA list(NULL)

[NULL x[0] list(NULL)

[[OOB Error Error
[[NA_real_ Error NULL

[[NULL Error Error

If the input vector is named, then the names of OOB, missing, or NULL

components will be "<NA>".

© 2015 by Taylor & Francis Group, LLC

Subsetting 45

3.2.4 Exercises
1. Given a linear model, e.g., mod <- lm(mpg ~ wt, data = mtcars),

extract the residual degrees of freedom. Extract the R squared
from the model summary (summary(mod))

3.3 Subsetting and assignment

All subsetting operators can be combined with assignment to modify
selected values of the input vector.

x <- 1:5

x[c(1, 2)] <- 2:3

x

#> [1] 2 3 3 4 5

The length of the LHS needs to match the RHS

x[-1] <- 4:1

x

#> [1] 2 4 3 2 1

Note that there's no checking for duplicate indices

x[c(1, 1)] <- 2:3

x

#> [1] 3 4 3 2 1

You can't combine integer indices with NA

x[c(1, NA)] <- c(1, 2)

#> Error: NAs are not allowed in subscripted assignments

But you can combine logical indices with NA

(where they're treated as false).

x[c(T, F, NA)] <- 1

x

#> [1] 1 4 3 1 1

This is mostly useful when conditionally modifying vectors

df <- data.frame(a = c(1, 10, NA))

df$a[df$a < 5] <- 0

df$a

#> [1] 0 10 NA

© 2015 by Taylor & Francis Group, LLC

46 Advanced R

Subsetting with nothing can be useful in conjunction with assignment
because it will preserve the original object class and structure. Compare
the following two expressions. In the first, mtcars will remain as a data
frame. In the second, mtcars will become a list.

mtcars[] <- lapply(mtcars, as.integer)

mtcars <- lapply(mtcars, as.integer)

With lists, you can use subsetting + assignment + NULL to remove com-
ponents from a list. To add a literal NULL to a list, use [and list(NULL):

x <- list(a = 1, b = 2)

x[["b"]] <- NULL

str(x)

#> List of 1

#> $ a: num 1

y <- list(a = 1)

y["b"] <- list(NULL)

str(y)

#> List of 2

#> $ a: num 1

#> $ b: NULL

3.4 Applications

The basic principles described above give rise to a wide variety of useful
applications. Some of the most important are described below. Many
of these basic techniques are wrapped up into more concise functions
(e.g., subset(), merge(), plyr::arrange()), but it is useful to understand
how they are implemented with basic subsetting. This will allow you to
adapt to new situations that are not dealt with by existing functions.

3.4.1 Lookup tables (character subsetting)

Character matching provides a powerful way to make lookup tables. Say
you want to convert abbreviations:

© 2015 by Taylor & Francis Group, LLC

Subsetting 47

x <- c("m", "f", "u", "f", "f", "m", "m")

lookup <- c(m = "Male", f = "Female", u = NA)

lookup[x]

#> m f u f f m

#> "Male" "Female" NA "Female" "Female" "Male"

#> m

#> "Male"

unname(lookup[x])

#> [1] "Male" "Female" NA "Female" "Female" "Male"

#> [7] "Male"

Or with fewer output values

c(m = "Known", f = "Known", u = "Unknown")[x]

#> m f u f f m

#> "Known" "Known" "Unknown" "Known" "Known" "Known"

#> m

#> "Known"

If you don’t want names in the result, use unname() to remove them.

3.4.2 Matching and merging by hand (integer subsetting)

You may have a more complicated lookup table which has multiple
columns of information. Suppose we have a vector of integer grades,
and a table that describes their properties:

grades <- c(1, 2, 2, 3, 1)

info <- data.frame(

grade = 3:1,

desc = c("Excellent", "Good", "Poor"),

fail = c(F, F, T)

)

We want to duplicate the info table so that we have a row for each value
in grades. We can do this in two ways, either using match() and integer
subsetting, or rownames() and character subsetting:

grades

#> [1] 1 2 2 3 1

© 2015 by Taylor & Francis Group, LLC

48 Advanced R

Using match

id <- match(grades, info$grade)

info[id,]

#> grade desc fail

#> 3 1 Poor TRUE

#> 2 2 Good FALSE

#> 2.1 2 Good FALSE

#> 1 3 Excellent FALSE

#> 3.1 1 Poor TRUE

Using rownames

rownames(info) <- info$grade

info[as.character(grades),]

#> grade desc fail

#> 1 1 Poor TRUE

#> 2 2 Good FALSE

#> 2.1 2 Good FALSE

#> 3 3 Excellent FALSE

#> 1.1 1 Poor TRUE

If you have multiple columns to match on, you’ll need to first collapse
them to a single column (with interaction(), paste(), or plyr::id()).
You can also use merge() or plyr::join(), which do the same thing for
you — read the source code to see how.

3.4.3 Random samples/bootstrap (integer subsetting)

You can use integer indices to perform random sampling or bootstrap-
ping of a vector or data frame. sample() generates a vector of indices,
then subsetting to access the values:

df <- data.frame(x = rep(1:3, each = 2), y = 6:1, z = letters[1:6])

Randomly reorder

df[sample(nrow(df)),]

#> x y z

#> 5 3 2 e

#> 6 3 1 f

#> 1 1 6 a

#> 2 1 5 b

#> 3 2 4 c

#> 4 2 3 d

© 2015 by Taylor & Francis Group, LLC

Subsetting 49

Select 3 random rows

df[sample(nrow(df), 3),]

#> x y z

#> 2 1 5 b

#> 1 1 6 a

#> 5 3 2 e

Select 6 bootstrap replicates

df[sample(nrow(df), 6, rep = T),]

#> x y z

#> 1 1 6 a

#> 2 1 5 b

#> 6 3 1 f

#> 1.1 1 6 a

#> 4 2 3 d

#> 1.2 1 6 a

The arguments of sample() control the number of samples to extract,
and whether sampling is performed with or without replacement.

3.4.4 Ordering (integer subsetting)

order() takes a vector as input and returns an integer vector describing
how the subsetted vector should be ordered:

x <- c("b", "c", "a")

order(x)

#> [1] 3 1 2

x[order(x)]

#> [1] "a" "b" "c"

To break ties, you can supply additional variables to order(), and you
can change from ascending to descending order using decreasing = TRUE.
By default, any missing values will be put at the end of the vector;
however, you can remove them with na.last = NA or put at the front
with na.last = FALSE.

For two or more dimensions, order() and integer subsetting makes it
easy to order either the rows or columns of an object:

Randomly reorder df

df2 <- df[sample(nrow(df)), 3:1]

df2

© 2015 by Taylor & Francis Group, LLC

50 Advanced R

#> z y x

#> 4 d 3 2

#> 1 a 6 1

#> 3 c 4 2

#> 6 f 1 3

#> 5 e 2 3

#> 2 b 5 1

df2[order(df2$x),]

#> z y x

#> 1 a 6 1

#> 2 b 5 1

#> 4 d 3 2

#> 3 c 4 2

#> 6 f 1 3

#> 5 e 2 3

df2[, order(names(df2))]

#> x y z

#> 4 2 3 d

#> 1 1 6 a

#> 3 2 4 c

#> 6 3 1 f

#> 5 3 2 e

#> 2 1 5 b

More concise, but less flexible, functions are available for sorting vectors,
sort(), and data frames, plyr::arrange().

3.4.5 Expanding aggregated counts (integer subsetting)

Sometimes you get a data frame where identical rows have been collapsed
into one and a count column has been added. rep() and integer subset-
ting make it easy to uncollapse the data by subsetting with a repeated
row index:

df <- data.frame(x = c(2, 4, 1), y = c(9, 11, 6), n = c(3, 5, 1))

rep(1:nrow(df), df$n)

#> [1] 1 1 1 2 2 2 2 2 3

df[rep(1:nrow(df), df$n),]

#> x y n

#> 1 2 9 3

#> 1.1 2 9 3

© 2015 by Taylor & Francis Group, LLC

Subsetting 51

#> 1.2 2 9 3

#> 2 4 11 5

#> 2.1 4 11 5

#> 2.2 4 11 5

#> 2.3 4 11 5

#> 2.4 4 11 5

#> 3 1 6 1

3.4.6 Removing columns from data frames (character
subsetting)

There are two ways to remove columns from a data frame. You can set
individual columns to NULL:

df <- data.frame(x = 1:3, y = 3:1, z = letters[1:3])

df$z <- NULL

Or you can subset to return only the columns you want:

df <- data.frame(x = 1:3, y = 3:1, z = letters[1:3])

df[c("x", "y")]

#> x y

#> 1 1 3

#> 2 2 2

#> 3 3 1

If you know the columns you don’t want, use set operations to work out
which colums to keep:

df[setdiff(names(df), "z")]

#> x y

#> 1 1 3

#> 2 2 2

#> 3 3 1

3.4.7 Selecting rows based on a condition (logical subset-
ting)

Because it allows you to easily combine conditions from multiple
columns, logical subsetting is probably the most commonly used
technique for extracting rows out of a data frame.

© 2015 by Taylor & Francis Group, LLC

52 Advanced R

mtcars[mtcars$gear == 5,]

#> mpg cyl disp hp drat wt qsec vs am gear carb

#> 27 26.0 4 120.3 91 4.43 2.140 16.7 0 1 5 2

#> 28 30.4 4 95.1 113 3.77 1.513 16.9 1 1 5 2

#> 29 15.8 8 351.0 264 4.22 3.170 14.5 0 1 5 4

#> 30 19.7 6 145.0 175 3.62 2.770 15.5 0 1 5 6

#> 31 15.0 8 301.0 335 3.54 3.570 14.6 0 1 5 8

mtcars[mtcars$gear == 5 & mtcars$cyl == 4,]

#> mpg cyl disp hp drat wt qsec vs am gear carb

#> 27 26.0 4 120.3 91 4.43 2.140 16.7 0 1 5 2

#> 28 30.4 4 95.1 113 3.77 1.513 16.9 1 1 5 2

Remember to use the vector boolean operators & and |, not the short-
circuiting scalar operators && and || which are more useful inside if
statements. Don’t forget De Morgan’s laws (http://en.wikipedia.org/
wiki/De_Morgan's_laws), which can be useful to simplify negations:

• !(X & Y) is the same as !X | !Y

• !(X | Y) is the same as !X & !Y

For example, !(X & !(Y | Z)) simplifies to !X | !!(Y|Z), and then to !X

| Y | Z.

subset() is a specialised shorthand function for subsetting data frames,
and saves some typing because you don’t need to repeat the name of the
data frame. You’ll learn how it works in Chapter 13.

subset(mtcars, gear == 5)

#> mpg cyl disp hp drat wt qsec vs am gear carb

#> 27 26.0 4 120.3 91 4.43 2.140 16.7 0 1 5 2

#> 28 30.4 4 95.1 113 3.77 1.513 16.9 1 1 5 2

#> 29 15.8 8 351.0 264 4.22 3.170 14.5 0 1 5 4

#> 30 19.7 6 145.0 175 3.62 2.770 15.5 0 1 5 6

#> 31 15.0 8 301.0 335 3.54 3.570 14.6 0 1 5 8

subset(mtcars, gear == 5 & cyl == 4)

#> mpg cyl disp hp drat wt qsec vs am gear carb

#> 27 26.0 4 120.3 91 4.43 2.140 16.7 0 1 5 2

#> 28 30.4 4 95.1 113 3.77 1.513 16.9 1 1 5 2

© 2015 by Taylor & Francis Group, LLC

http://en.wikipedia.org
http://en.wikipedia.org

Subsetting 53

3.4.8 Boolean algebra vs. sets (logical & integer subset-
ting)

It’s useful to be aware of the natural equivalence between set operations
(integer subsetting) and boolean algebra (logical subsetting). Using set
operations is more effective when:

• You want to find the first (or last) TRUE.

• You have very few TRUEs and very many FALSEs; a set representation
may be faster and require less storage.

which() allows you to convert a boolean representation to an integer
representation. There’s no reverse operation in base R but we can easily
create one:

x <- sample(10) < 4

which(x)

#> [1] 3 8 9

unwhich <- function(x, n) {

out <- rep_len(FALSE, n)

out[x] <- TRUE

out

}

unwhich(which(x), 10)

#> [1] FALSE FALSE TRUE FALSE FALSE FALSE FALSE TRUE TRUE

#> [10] FALSE

Let’s create two logical vectors and their integer equivalents and then
explore the relationship between boolean and set operations.

(x1 <- 1:10 %% 2 == 0)

#> [1] FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE

#> [10] TRUE

(x2 <- which(x1))

#> [1] 2 4 6 8 10

(y1 <- 1:10 %% 5 == 0)

#> [1] FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE

#> [10] TRUE

(y2 <- which(y1))

#> [1] 5 10

© 2015 by Taylor & Francis Group, LLC

54 Advanced R

X & Y <-> intersect(x, y)

x1 & y1

#> [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

#> [10] TRUE

intersect(x2, y2)

#> [1] 10

X | Y <-> union(x, y)

x1 | y1

#> [1] FALSE TRUE FALSE TRUE TRUE TRUE FALSE TRUE FALSE

#> [10] TRUE

union(x2, y2)

#> [1] 2 4 6 8 10 5

X & !Y <-> setdiff(x, y)

x1 & !y1

#> [1] FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE

#> [10] FALSE

setdiff(x2, y2)

#> [1] 2 4 6 8

xor(X, Y) <-> setdiff(union(x, y), intersect(x, y))

xor(x1, y1)

#> [1] FALSE TRUE FALSE TRUE TRUE TRUE FALSE TRUE FALSE

#> [10] FALSE

setdiff(union(x2, y2), intersect(x2, y2))

#> [1] 2 4 6 8 5

When first learning subsetting, a common mistake is to use x[which(y)]

instead of x[y]. Here the which() achieves nothing: it switches from
logical to integer subsetting but the result will be exactly the same.
Also beware that x[-which(y)] is not equivalent to x[!y]: if y is all
FALSE, which(y) will be integer(0) and -integer(0) is still integer(0),
so you’ll get no values, instead of all values. In general, avoid switching
from logical to integer subsetting unless you want, for example, the first
or last TRUE value.

3.4.9 Exercises

1. How would you randomly permute the columns of a data
frame? (This is an important technique in random forests.)

© 2015 by Taylor & Francis Group, LLC

Subsetting 55

Can you simultaneously permute the rows and columns in one
step?

2. How would you select a random sample of m rows from a data
frame? What if the sample had to be contiguous (i.e., with
an initial row, a final row, and every row in between)?

3. How could you put the columns in a data frame in alphabetical
order?

3.5 Answers

1. Positive integers select elements at specific positions, negative
integers drop elements; logical vectors keep elements at posi-
tions corresponding to TRUE; character vectors select elements
with matching names.

2. [selects sub-lists. It always returns a list; if you use it with a
single positive integer, it returns a list of length one. [[selects
an element within a list. $ is a convenient shorthand: x$y is
equivalent to x[["y"]].

3. Use drop = FALSE if you are subsetting a matrix, array, or data
frame and you want to preserve the original dimensions. You
should almost always use it when subsetting inside a function.

4. If x is a matrix, x[] <- 0 will replace every element with
0, keeping the same number of rows and columns. x <- 0

completely replaces the matrix with the value 0.
5. A named character vector can act as a simple lookup table:

c(x = 1, y = 2, z = 3)[c("y", "z", "x")]

© 2015 by Taylor & Francis Group, LLC

