
Data Visualization

01

Prof. Dr. Phillipp Torkler

Data Visualization Provides Data Exploration and
Communication

Data Visualization serves two major purposes:

1. Data Exploration:
• Familiarize with a data set
• Look for patterns in data
• Patterns or regularities in the data set are expected but not known in advance
• Data exploration can guide the scientific process
• New scientific ideas can emerge from visualizations from (laboratory) data. Thus, data visualization is

often more than ‘just showing data’.

2. Communication / Presentation:
• Interesting findings have been made and need to get communicated clearly to readers
• Focus to tell a clear message
• A reader does not need to get through the same process as a researcher that tries to find patterns

during data exploration. In contrast, key findings should be communicated without overwhelming a
reader with unnecessary data

In either case, the purpose of any figure is to transport a message!

Why Do We Need Exploration and Communication?

Today, the challenge for researchers is to take benefit from large data sets without getting drawn in too much data.
Thus, both exploration and communication is key for finding and sharing new insights.

Goals of data visualization:

• enable researches to explore and explain their data through (interactive) visualizations
• take advantage of the human’s ability to recognize patterns
• data types and research questions evolve rapidly in the scientific community. Likewise, data visualizations

need to adapt to new techniques to provide insights.
• Visualization as a complement for algorithmic approaches to provide a mental image of what happens (see

example)

Wong, B. “Visualzing biological data” Nature Methods (2012)

Technical and Design Aspects of Data Visualization

A figure can be any visual representation: graphs, photos, drawings, schematics, cartoons, maps etc.. Despite their
variety, the purpose of any figure is to support a message. Good figures will show the data AND the message you
want to tell!

Figure creation consists of two major building blocks:

1. The ’technical’ generation of a figure (the doing):
• e.g. use of a programming language and corresponding graphic library
• choice and usage of graphics software
• photography etc…

2. The ‘design’ of a figure (the theory and idea):
• use graphic design principles
• biology of the human visual system
• psychology

In this course we want to train ’the doing’ and introduce a couple of design principles to generate meaningful and
clear figures.

Examples For Clearly Structured Figures (1)

Wong, B. “Simplify to clarify” Nature Methods (2011)

Visualizing chromosomal inversion that results in two fusion genes:

Examples For Clearly Structured Figures (2)

Examples for pathway diagrams

• redundant visual encodings removed and main points emphasized by visual
grouping

• Color and shape variations have been removed except for those highlighting
a molecule of interest (orange), the products of the pathway (blue)

Wong, B. “Pathways” Nature Methods (2016)

Reading Exercise

• What is salience?
• Why do we need to consider the concept of salience when designing (scientific) visualizations?

Notes

Figure Generation

Vector vs. Raster Graphics

https://inkscape.org/~ozant/★art-bot

Vector vs. Raster Graphics

https://inkscape.org/~ozant/★art-bot

Raster Graphic Vector Graphic

Vector vs. Raster Graphics

https://inkscape.org/~ozant/★art-bot

A raster graphic of width 𝑛 and height 𝑚 is described by an 𝑚𝑛 array
where each position 𝑖, 𝑗 stores the color information of the
corresponding pixel of the graphic.

In contrast, vector graphics are described by graphical primitives like
lines (described by two points) and circles (described by center and
radius). Primitives can be described by mathematical functions, and
they can be combined to build complex objects.

Objects in a vector graphic are fully described by their primitives and
as a consequence of that vector graphics can be scaled without loss
in quality.

Take home message: schematic drawings or data visualizations are
ideally generated in a vector format.

There are many tools available, but two prominent examples are Adobe Illustrator (if you have money and want to pay)
and Inkscape (free and open-source). Both programs can be used to create or edit vector graphics.

Tools For Creating and Editing Vector Graphics

https://www.adobe.com/products/illustrator.htmlhttps://inkscape.org

Knowledge in these tools can be quite helpful even as a computer scientist. Composing bigger figures from multiple
single plots, quickly adjust or align colors, add explanations or explanatory drawings can help to create better figures.
Depending on the scenario, compositions can be done more easily in these programs rather than doing these edits via
programming.

Of course, as computer scientists we want to generate figures from data automatically via programming languages. In
the first part of the course, you have already been introduced into base R and ggplot2. For the sake of comparison, let’s
look at a few others:

Figure Generation via Programming

Base R [https://cran.r-project.org]

matplotlib (python) [https://matplotlib.org]

D3 (JavaScript) [https://d3js.org]

ggplot2 (R) [https://ggplot2.tidyverse.org]

seaborn (Python) [https://seaborn.pydata.org/examples/index.html]

plotly (R, Python, JavaScript) [https://plotly.com]

bokeh (Python) [https://docs.bokeh.org/en/latest/index.html]

and so on…. there are so many…

If There Are So Many, Which Should I Learn?

ggplot2 (R) [https://ggplot2.tidyverse.org]

seaborn (Python) [https://seaborn.pydata.org/examples/index.html]

plotly (R, Python, JavaScript) [https://plotly.com]

bokeh (Python) [https://docs.bokeh.org/en/latest/index.html]

Typically, it makes sense to focus on a plotting library that belongs to the language that is used in the project. Since most
data science is performed via R or Python it is beneficial to have experience in both. For R good starting points are base
R and ggplot2 for Python matplotlib is very popular.

Comparing the left and right list, what do you think is the difference between them?

Base R [https://cran.r-project.org]

matplotlib (python) [https://matplotlib.org]

D3 (JavaScript) [https://d3js.org]

If There Are So Many, Which Should I Learn?

Base R [https://cran.r-project.org]

matplotlib (python) [https://matplotlib.org]

D3 (JavaScript) [https://d3js.org]

ggplot2 (R) [https://ggplot2.tidyverse.org]

seaborn (Python) [https://seaborn.pydata.org/examples/index.html]

plotly (R, Python, JavaScript) [https://plotly.com]

bokeh (Python) [https://docs.bokeh.org/en/latest/index.html]

Typically, it makes sense to focus on a plotting library that belongs to the language that is used in the project. Since most
data science is performed via R or Python it is beneficial to have experience in both. For R good starting points are base
R and ggplot2 for Python matplotlib is very popular.

Comparing the left and right list, what do you think is the difference between them?

It’s hard to draw a clear line, but some libraries are more low-level (e.g. base R, D3, matplotlib), whereas others are
more high-level (e.g. seaborn, ggplot2). It’s a trade-off. The more high-level a library is, the more you need to stick to the
decisions and the offered functionality. Extending or changing is often cumbersome. Low-level offers more flexibility at
the cost of spending more time to create visual pleasing plots.

Technical Requirements

Conda, Python, Matplotlib

In this course we will use Python to generate data visualizations. The LSI students should have a running system since
this setup is used in other courses as well.

Follow the instructions on the DataVis_Setup.pdf to install the required software.

Matplotlib

matplotlib user guide:

https://matplotlib.org/stable/tutorials/introductory/usage.html

Matplotlib

matplotlib user guide:

https://matplotlib.org/stable/tutorials/introductory/usage.html

Programming Exercise

• Create A Dot Plot From Scratch Using Python/matplotlib

A Dot Plot Visualizes Sequence Similarity

A simple and visual way of comparing two sequences 𝑠! and 𝑠" of length 𝑛 and 𝑚 with each other is a dot plot. The sequences 𝑠! and
𝑠" span a 𝑛×𝑚 matrix 𝑀 where a dot is plotted for 𝑀#,% if 𝑠! 𝑖 = 𝑠" 𝑗 .

𝑀#,% =)
1, if 𝑠![𝑖] = 𝑠" [𝑗]
0, if 𝑠![𝑖] ≠ 𝑠"[𝑗]

The figure below shows a dot plot for 𝑠! = 𝐶𝐼𝑉𝐼𝐿𝐼𝑍𝐴𝑇𝐼𝑂𝑁 and 𝑠" = 𝐷𝐴𝑇𝐴𝑉𝐼𝑆𝑈𝐴𝐿𝐼𝑍𝐴𝑇𝐼𝑂𝑁𝐶𝑂𝑈𝑅𝑆𝐸.

A Dot Plot Visualizes Sequence Similarity

Matplotlib user guide:

https://matplotlib.org/stable/tutorials/introductory/usage.html

https://twitter.com/ThePracticalDev/status/720257210161311744

