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available at the end of the article source) or the age of a heat pump installation renders energy-related services possible

that utility companies can offer in the future (e.g., detecting wrongly calibrated
installations, household energy efficiency checks). This study investigates the
prediction of heat pump installations, their thermal reservoir and age. For this, we
obtained a dataset with 397 households in Switzerland, all equipped with smart
meters, collected ground truth data on installed heat pumps and enriched this data
with weather data and geographical information. Our investigation replicates the state
of the art in the area of heat pump detection and goes beyond it, as we obtain three
major findings: First, machine learning can detect the existence of heat pumps with an
AUC performance metric of 0.82, their heat reservoir with an AUC of 0.86, and their age
with an AUC of 0.73. Second, heat pump existence can be better detected using data
during the heating period than during summer. Third the number of training samples
to detect the existence of heat pumps must not be necessarily large in terms of the
number of training instances and observation period.
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Introduction

Heat pumps are modern systems that effectively, and sustainably, heat and cool rooms
and domestic hot water. They use electricity to convert natural energy from ground water,
the earth or air into usable heat energy. This energy comes with zero emissions at the
installation. Heat pumps are not only attractive for residential homes due to their efficient
energy generation, they also require little maintenance (Karytsas and Choropanitis 2017)
and have a long service life, which usually amortizes their higher purchase price over
their time of operation. In addition to these basic characteristics, such heating systems
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enable the effectively combination with local photovoltaic installations to realize self-
supply and storage concepts on a micro level on various scales, from a single residency up
to industrial environments (Lorenzo and Narvarte 2019).

Grid operators can benefit from a greater diffusion of heat pumps—under their
control—in four ways (Fischer and Madani 2017): First, they can use heat pumps for grid
easing (e.g., voltage control, congestion management, and as operating reserve), to inte-
grate renewable energies (e.g., wind, photovoltaic, smoothing of residual load) by coupling
the sectors electricity and heat, and to better manage electricity prices (e.g., time of use,
day ahead, and dynamic pricing).

The diffusion of heat pumps shows a strong increase. The European Heat Pump Asso-
ciation (EHPA 2019) estimates 11.8 million installed units in 2018, whereas only 1.14
million units were installed in 2005. This significant investment in sustainable technolo-
gies pleases climate policymakers, but causes headaches for energy suppliers, especially
in terms of load forecasting and grid planning. They rely on accurate forecasts to deter-
mine needed resources to maintain the energy balance between supply and consumption
constantly. Heat pumps represent a significant load on the power grid and show differ-
ent load curves than households that have other heating installations. Grid planning for
private households is still often carried out with standard load profiles, especially for con-
sumers who have not yet installed a smart meter (Fischer and Madani 2017; Pflugradt and
Muntwyler 2017). Significant additional load, as heat pumps generate, can have a neg-
ative impact on the stability of the grid, when grid operators do not know the needed
energy. For known heat pump installations, energy utilities use special load profiles in
their planning, but energy utilities do not necessarily know all heat pump installations,
given that homeowners have no obligation to report them to the grid operator in the
case of small installations. In addition to the problem context of load forecasting and
grid operation, energy utilities want to develop new services around the topic of energy
efficiency, partially because they are mandated to do so (EU 2012). Further informa-
tion, in addition to the existence of a heat pump installation, such as the heat reservoir
or the age of a system, enables novel services. For example, when providers know the
reservoir (ground source or air source) and the age of a heat pump, they can detect
wrongly calibrated ones or conduct energy efficiency checks for homes to offer retrofit
options or support consumers to avoid rebound effects (Winther and Wilhite 2015).
Besides efficiency improvements, old heat pumps often rely on gases that are harmful
to the environment, e.g., like hydrofluororcarbon as refrigerant that has a global warm-
ing effect up to 23,000 times greater than carbon dioxide if it leaks into the atmosphere
(EC 2016).

To some extent, energy utilities know installed heat pumps from their grid data and use
separate electricity meters for such installations because consumers can then choose a
special tariff for heat pumps. The ability to detect heat pumps is nevertheless relevant, as
small heat pumps do not require notification to the utility company. In addition, energy
suppliers must optimize their meter to cash processes and reduce the number of sep-
arate electricity meters. Hence, it is helpful to extract the existence of heat pumps and
other details from the available data. This paper therefore explores the following research
question: How well can machine learning extract information on installed heat pumps in
residential homes from data available to grid operators (i.e., electricity smart meter data,
weather data, open data)?
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We structure the remainder of the paper as follows: The following section summarizes
the related works in adjacent areas. The third section describes our research method
together with the dataset available for our study. Thereafter, we describe our findings. We

close the paper with a summary and name implications for research and practice.

Related work

Analytics of smart meter data is a vivid field of research. Many studies exist that aim to
recognize electric appliances (Hart 1992; Zeifman and Roth 2011) and to predict house-
hold characteristics (Albert and Rajagopal (2013); Beckel et al. (2013, 2014); Hopf et al.
(2014, 2018)), in order to realize load forecasting or demand shifting potentials. When
limiting the scope to 15-min data that standard smart meter installations record, just two
works investigate the detection of heat pumps: Fei et al. (2013) test the predictability of
heat pumps in a marketing context in the U.S. using daily electricity consumption and
weather data from a 21-month period. The applicability of the results in Central Europe is
questionable, because building characteristics such as the typical age and insulation stan-
dards of buildings are different (Hu and Qiu 2019). In addition, air conditioning systems
are more widespread in North America and have on average a lower energy efficiency
level (IEA 2020). This should influence the results. Hopf et al. (2018) and Hopf (2019)
investigate the predictability of, in total, 38 household characteristics based on a dataset
with 12 months of 15-min electricity consumption and weather data from Switzerland.
Their work does not dive into detailed characteristics of heat pumps, like the used heat
reservoir or the age of a heat pump.

In our study, we replicated and extend the existing studies with a newly collected
dataset. We further tested additional public available data and investigated the pre-
dictability of the heat pump reservoir and age which are relevant information for the
development of energy efficiency services.

Method

We employ a data science approach to answer the research question and use machine
learning to investigate the predictability of heat pump characteristics (see Fig. 1). Below,
we describe the dataset, the feature extraction, the application of machine learning
algorithms, and the evaluation approach.

Data sources Features

Electricity consumption

> 91 features Machine learning
smart meter data y
model evaluation
Weather data — 30 features
J kNN ANN
Solar cadaster data [ 3 features
Grid data
serve as ground truth
Survey data

Fig. 1 Data science approach to evaluate heat pump predictions
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Data

We use data from four different sources: A dataset with electricity smart meter data and
information what is measured on the meter, a dataset with weather observations, a solar
cadaster dataset, and a survey of residential customers.

The electricity smart meter dataset and the information on what is measured on the
meter stems from a large electricity retailer in central Switzerland. During our study, the
utility company was rolling out the smart meter infrastructure and, in spring 2020, the
company had installed such meters in 8,389 residential households. We received data
(kWh consumption in 15-min measurement intervals) from all residential customers with
such a meter, together with a short description of each meter that stems from grid oper-
ation. This description contains the information whether a heat pump is connected and
reported to the grid operator. However, this information might be incomplete because
installers report this information late or not at all, because smaller heat pumps do not
need to be reported to the grid operator. The data in total covers a time span between Jan-
uary 2012 and March 2020 with an increasing number of metering points (873 in January
2012 to 13,176 in March 2020, including also meters in commercial places).

In order to obtain additional information on existing heat pumps and verify the infor-
mation reported to grid operation, we conducted a survey in February 2018. We see
customer surveys as a reasonable method to collect training data for machine learning
applications, especially when it comes to collect objective technical information about
housing (i.e., the heating type). Surveys are also a popular data collection method for exist-
ing machine learning applications on smart meter data, for example to detect household
characteristics (Albert and Rajagopal 2013; Beckel et al. 2014).

We invited all 3,636 residential customers whose metering points where equipped
with a smart meter at that time. Given that the cooperating electric utility operates in
a monopoly market at the time of the study (Switzerland), a sufficient regional cover-
age is given. We asked survey participants what heating system they use in general (e.g.
oil heater, gas heater, heat pump), if they had a heat pump, what reservoir it uses (e.g.
ground source or air source), and we obtained a consent for the use of their smart meter
data and address in our study. In total, 589 households participated in that survey, and
397 households provided data on their heating installation. For this study, we used this
information to construct the dependent variables that we list in Table 1. We found a mis-
match between the heat pump information that was stored in the utility’s grid data and
the reported existence of heat pumps: 90 customers stated that there was a heat pump,

Table 1 Heat pump characteristics and available ground truth data

Dep. variable Class Class size Relative
Heat pump existence Heat pump 93 23%

No heat pump 304 77%
Heat pump type (reservoir) Ground source 63 16%

Air source 24 6%

No heat pump 304 78%
Heat pump age <10 49 54%
(binary) > 10 41 46%
Heat pump age < 10 49 54%
(three classes) 10 <X <20 31 34%

> 20 10 1%
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but the utility company was only aware of 51 installations. There were also three installa-
tions listed at the utility where customers did not report any heat pump in the survey. For
the training dataset, we counted all houses in the class “Heat pump’, where either in the
survey or in the grid data a heat pump was specified.

We enrich the training dataset with weather information because the outside temper-
ature influences the consumption pattern of heat pumps strongly. We expected that this
additional information improves the models, as the thermal energy demand of a heat
pump, required to keep a house on a comfortable temperature level increases with a
decreasing outside temperature. Conversely, low outside air temperatures decreases the
coefficient of performance a heat pump because electrical power consumed by the com-
pressor must increase to compensate the lower air temperature. Weather data were also
used in related work (Fei et al. 2013; Hopf et al. 2018). We used NOAA (2020) weather
data for four weather variables (temperature, wind speed, air pressure, and precipitation)
from the six nearest stations within the area of the distribution grid of the utility company.
The most obvious approach to assign a weather station to a metering point is to use flat
distance between both sites. However, due to special mountainous landscape in Switzer-
land not only the flat distance but also the altitude to the next weather station must be
considered. For this reason, we decided to calculate for each variable the average value of
the six nearest weather stations together, instead of using only the nearest weather sta-
tion. The weather data has a measurement interval of 60 min and we completed missing
values through linear interpolation.

Finally, we use geographic information to account for heating system related household
characteristics that are otherwise not available for grid operators or utilities and might
be beneficial to detect the existence of heat pumps. We found the Swiss solar cadaster!
as a helpful dataset in this case, as it provides data on the living area of a house that
must be heated and contains an estimation of the thermal energy demand (heating and
domestic hot water generation) for 3,677,970 individual houses in Switzerland (Klauser
and Schlegel 2016). In order to assign the solar cadaster information to the households
in the smart meter dataset, we selected the nearest building at the given the customer
address.

Feature extraction

In order to prepare the data for further analyses, we computed 91 features for each
week of the smart meter dataset. This time window is one instance of the natural work-
ing days and weekend cycle and is sufficiently large to detect household characteristics
(Beckel et al. (2014); Hopf et al. (2014, 2018); Hopf (2019)). We used features on the
smart meter electricity consumption data for one week that earlier works found effec-
tive to the detect household characteristics (Hopf et al. (2014, 2018); Hopf (2019)). These
features describe the smart meter data from four directions: consumption features (e.g.,
mean consumption during times of the day), ratios of consumption measurements (e.g.,
ratio between consumption on weekdays and the weekend), statistical values (e.g., stan-
dard deviation, auto-correlation), and time-series related features (e.g., seasonal trend
decomposition). The full list of features can be found in Hopf et al. (2018) and the
implementation is available in the R package SmartMeterAnalytics.

Uhttps://www.uvek-gis.admin.ch/BFE/sonnendach/, last access March 31, 2020; the data was provided by the Swiss
Federal Office of Energy
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Table 2 Tested combinations of feature sets and available entries in the dataset for heat pump

existence

Sample size Smart meter Weather Solar cadaster
Num. features - 91 30 3
Model 1 (SMD) 397 X
Model 2 (SMD + solar cadaster) 397 X X
Model 3 (SMD + weather) 387 X X
Model 4 (all features) 387 X X X

For each of the four weather variables, we computed eight features that describe the cor-
relation between electricity consumption data and weather data (e.g., overall correlation,
during different daytimes, and days of the week). Two correlations for the precipita-
tion could not be calculated because of missing values in the weather data, therefore we
obtained 30 features from smart meter and weather data. A full list of features is given in
Hopf et al. (2018).

From the solar cadaster dataset, we computed three features: The basal area of the
building, the energy demand of hot water (in kWh per year), and the energy demand
for room heating (in kWh per year). Details on the estimation of these numbers can be
obtained from the technical report (Klauser and Schlegel 2016). For two observations in
our sample, we had no geo-reference, thus, we interpolated the missing values of the solar
cadaster features (32 values in total) with the respective column mean values. A list of the
number of variables calculated for each data source is given in Table 2.

Application of machine learning algorithms

We apply machine learning for the detection of installed heat pumps in residential homes
in order to create prediction models from the ground truth data on heat pumps, following
earlier studies (Beckel et al. 2014; Fei et al. 2013; Hopf et al. 2018). We test five machine
learning algorithms from different categories:

e Random Forest (RF) as an ensemble learner generates multiple low correlated
decision trees and uses majority vote to decide which example belongs to which class.

e Support Vector Machine (SVM) searches for a hyper plane in the vector space that
separates all training examples with a maximal margin (Vapnik 1998).

e Naive Bayes (NB) is a classifier that predicts the class membership based on a
probability that a given data point belongs to a class by applying the Bayes’ theorem.

e k Nearest Neighbor (kNN) as distance-based approach infers the class-membership
by considering the k training instances with the lowest (e.g., Euclidean) distance.

e A simple feed-forward Artificial Neural Network (ANN) was used which consists of a
single layer of outputs.

For a detailed description of the used algorithms we refer to Kuhn and Johnson (2013).
We used a standard set of parameters and packages in R%.

2 RE: ntree = 500, mtry = 9, nodesize = 1;, implementation of (Liaw and Wiener 2002) SVM: radial kernel,

cost =1,y = 0.01,¢ = 0.1, coef = 0, implementation of (Meyer et al. 2019) kNN: Euclidean distance, k = 1,
implementation of (Kuhn 2020) NB: implementation of (Meyer et al. 2019) ANN: One hidden layer, rprop+ algorithm,
SSE error function, logistic activation function, threshold : 0.01, repetitions : 1, stepmax = le + 05, implementation of
(Fritsch et al. 2019)
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Model evaluation
We evaluated the prediction results by comparing predicted with true labels. Thereby, we

used the measures:

. true positives

recision =
P predicted positives
true positives
recall = ————
actual positives
2 « precision * recall

F =

precision + recall

These three measures are well known, but they are biased by the class distribution.
Consequently, a comparison of the results between different dependent variables is diffi-
cult. Therefore, we use the Receiver Operating Characteristic (ROC) curve. This curve is
a two-dimensional figure with true positive and false positive rates on vertical and hor-
izontal axes (Fawcett 2006). Area under the ROC curve (AUC) is a performance metric
derived from the ROC portion of the area of the unit square, and its value varies between
0 and 1. Random guessing produces a diagonal line between (0, 0) and (1, 1), which has
an AUC of 0.5. Effective prediction models are therefore expected to achieve values above
0.5 (Fawcett 2006). For the performance evaluation, we apply 10-fold cross-validation and

present the mean values of measures.

Results

We organize the result presentation in three sections. We start with the detection of
heat pumps from smart meter electricity consumption data. We tested different machine
learning algorithms and combinations of feature sets. This analysis also helped us to com-
pare our work with the state of the art and to select the best performing model for the
consecutive analyses. Second, we analyzed the prediction performance over time to get
an impression of the model stability as well as times of the year in which data collection
for real applications is most helpful. Third, we tested how well heat pump characteristics
such as the type of the heat reservoir or age of the device can be predicted by our model.

Prediction of heat pump existence
In the first analysis, we predicted the existence of a heat pump in the form of a binary
classification problem. The ground truth data for this analysis stem from grid information
and survey data that we used to define the dependent variable heat pump existence (see
Table 1). We tested the different machine learning algorithms and feature sets with data
from one typical week in spring 2020 that has no school or public holidays included, and
is still within the typical heating period in Switzerland (ISO week 10, March 02-08).
Table 2 gives an overview to the different combinations of feature sets and the respec-
tive dataset sizes. The first model contained only features extracted from the smart meter
data (91 features in total), the second model also included the solar cadaster features (94
features in total), the third model considered the smart meter in combination with the
weather features (121 features in total), and the last model included all features (124 fea-
tures in total). Due to missing values in the weather features, the number of observations
is reduced by 10 to 387 in the third and fourth model, respectively.
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Table 3 shows the Mean (M) prediction performance and the Standard Deviation (SD)
in brackets of these models with all tested machine learning models and performance
metrics. The best result for each performance metric is marked bold. Using AUC as the
central performance metric, RF leads to the best results compared to the other algorithms.
Combining either the solar cadaster or the weather features with the smart meter features
increases the performance, but the model with all features is worse than the combination
of smart meter and weather features (model 3). Thus, the best model (smart meter and
weather data) achieved an AUC of M = 0.822 (SD = 0.07), which is slightly higher than
an AUC of M = 0.807 (SD = 0.07) of the model with all features (model 4), but the
difference was not statistically significant £(17.99) = 0.50,p = 0.624,d = 0.22. Based on
these results, we have excluded the ANN algorithm from the following analyses and only
use smart meter and weather data (model 3). This helped to reduce the complexity of the
following steps.

For the RF algorithm, we also illustrate the four models as ROC curves in Fig. 2. It is
visible that model 3 has the strongest curvature, but the difference to the other models is
not large.

Seasonal impact on the classification performance

We further tested whether the time of the year—and respectively changing heating
behavior—affects the classification performance. For this analysis, we used the RF algo-
rithm with smart meter and weather features (model 3). We calculated the classification
performance for each week between January 1, 2017 and March 31, 2020 and visualize
the AUC results in Fig. 3.

Table 3 Mean and standard deviation of prediction performance for heat pump existence with
different machine learning algorithms (Data: ISO week 10, 2020)

Algo. Models AUC Precision* Recall F1
RF Model 1 0.794 (0.10) 0.733(0.17) 0401 (0.19) 0.691 (0.23)
RF Model 2 0.797 (0.11) 0.728 (0.17) 0412 (0.19) 0.689 (0.23)
RF Model 3 0.822 (0.07) 0.737(0.21) 0.449 (0.13) 0.723(0.21)
RF Model 4 0.807 (0.07) 0.750(0.22) 0426 (0.12) 5(0.21)
SVM Model 1 0.769 (0.11) 0.822(0.16) 0.433(0.19) 0.724(0.22)
SVM Model 2 0.773(0.11) 0.847 (0.16) 0.443(0.18) 0.733(0.21)
SVM Model 3 0.792 (0.10) 0.803 (0.23) 0.449 (0.15) 0.736 (0.21)
SVM Model 4 0.786 (0.11) 0.790 (0.23) 0.449 (0.15) 0.734(0.21)
kNN Model 1 0.637 (0.06) 0.524 (0.20) 0420 (0.13) 0.641(0.22)
kNN Model 2 0.663 (0.12) 0447 (0.22) 0481 (0.26) 0.650 (0.26)
kNN Model 3 0.641 (0.09) 0486 (0.13) 0426 (0.18) 0.639(0.23)
kNN Model 4 0.605 (0.11) 0.374(0.20) 0.394 (0.19) 0.599 (0.26)
NB Model 1 0.689 (0.12) 0.267 (0.05) 0.830(0.08) 3(0.11)
NB Model 2 0.693 (0.11) 0.263 (0.05) 0.831(0.08) 0.393(0.12)
NB Model 3 0.701 (0.10) 0272 (0.04) 0.821(0.14) 0.446 (0.09)
NB Model 4 0.704 (0.11) 0.278 (0.04) 0.843 (0.13) 0.452 (0.09)
ANN Model 1 0.529 (0.09) - 0.030 (0.09) 0456 (0.43)
ANN Model 2 0.545 (0.05) - 0.033 (0.10) 0.455 (0.43)
ANN Model 3 0.500 (0.02) - 0.000 (0.00) 0.435 (0.45)
ANN Model 4 0.536 (0.05) - 0.000 (0.00) 0435 (0.45)

“The ANN model could not predict any positive example
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Fig. 2 ROC curves for RF prediction results of the four tested models

The average AUC is significantly higher and predictions are more stable during heating
times: The weeks 1-12 (roughly the first three months of the year) together with week
40-52 (roughly the last two months of the year) have an AUC of M = 0.774 (SD = 0.13)
and the weeks 13-39 M = 0.674 (SD = 0.12). This difference is statistically significant
with £(164.85) = 5.18,p < .001,d = 0.80.

Heat pump type (reservoir)
For a sample of 87 installations, we have survey data on the reservoir of the heat pump
available. Based on this data, we tested whether this detail can be predicted based on
smart meter and weather data (which was the feature set that performed best in our first
analysis). We set up this prediction in two ways. First, we used a three-class problem with
the classes “Ground source’, “Air source’, and “No heat pump” Second, we used only the
subset of data with the known heat pump types (n = 87) and predicted the type as a
two-class problem.

The results of both prediction problems are shown in Table 4. The RF algorithm
performed best for the three-class problem. In contrast to the performance of our ini-
tial prediction problem (where we just predicted the existence of a heat pump), the
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Fig. 3 Detection of heat pumps over time
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Table 4 Heat pump type (reservoir) with data from week 10, 2020 using smart meter and weather

features
Algo. AUC (ground source) AUC (air source) AUC (no heat pump)
Three classes {ground source, air source, no heat pump} using complete dataset (n = 381)
RF 0.732(0.08) 0.859 (0.21) 0.811 (0.05)
SVM 0.734 (0.09) 0.835(0.25) 0.803 (0.06)
kNN 0.548 (0.07) 0.640 (0.17) 0.670 (0.06)
NB 0494 (0.14) 0.802 (0.20) 0.728 (0.08)
Two classes {ground source, air source} using known installations (n = 87)
RF 0.559 (0.30)
SVM 0.529(0.27)
kNN 0.593 (0.16)
NB 0.649 (0.30)

prediction of air heat pumps AUC of M = 0.859 (SD = 0.21) is not statistically sig-
nificantly different (£(10.77) = 0.51,p = 0.620,d = 0.23) from the initial prediction
problem M = 0.822 (SD = 0.07). In case of ground source heat pumps the AUC of
M = 0.732(SD = 0.08), the prediction is worse (£(17.41) = —2.69, p = 0.008,d = —1.20)
compared to the initial prediction problem M = 0.822(SD = 0.07). However,
we can predict more information (three classes instead of two) with a considerable
performance loss.

The two-class problem, where we tested whether the reservoir can be predicted when
the existence is known, achieves lower performance values than the three-class problem.
We attribute this lower prediction AUC to the lower number of training examples in this
experiment.

We conclude that, based on the data, knowledge about the existence of a heat pump
does not contribute significantly to a better prediction of the heat pump reservoir, prob-
ably because households with heat pumps show a considerably different consumption
pattern compared to households without heat pumps and thus can be easily discrimi-
nated. However, a combined prediction of the existence and reservoir of a heat pump can

lead to more detailed information that is also more accurate.

Heat pump age

Finally, we investigated the predictability of the age of heat pumps in our sample. Table 5
shows the performance of the different classification algorithms with a two- and a three-
class classification problem. We observe that the RF algorithm, again, shows better results
in the three-class problem compared to the two-class problem. However, the NB model
shows better results in detecting heat pump installations that are newer than ten years,
but not in detecting older systems. Here, RF is better, but all results are affected to high

variations.

Discussion and conclusion

This paper investigated the application of machine learning algorithms to detect the exis-
tence of heat pumps as well as characteristics about such installations from 15-min smart
meter data. We draw on two earlier works on heat pump detection (one covers installa-
tions in the U.S. (Fei et al. 2013) and the other installations in Switzerland (Hopf et al.
2018; Hopf 2019)), replicate their results and pursued further analyses.
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Table 5 Heat pump age in years with data from week 10, 2020 using smart meter and weather

features
Algo. AUC (< 10) AUC (> 10) AUC (> 20)
Three classes {< 10,10 < X < 20,> 20}
RF 0.651 (0.09) 0.617(0.15) 0.726 (0.23)
SVM 0.631(0.17) 0.626 (0.14) 0.395 (0.34)
kNN 0417 (0.11) 0.517 (0.20) 0.439 (0.05)
NB 0.656 (0.14) 0.623(0.19) 0.366 (0.29)
Two classes {< 10,> 10}
RF 0.654 (0.18)
SVM 0.671(0.15)
kNN 0491 (0.13)
NB 0.695 (0.17)

We collected a dataset that covers 3.5 years of smart meter electricity consumption
data together with ground truth data. This time span is larger than those of previous
work (with 1 or 2.5 years). Drawing on survey data and data from electricity grid opera-
tions, we identify true class labels. This combination of the two data sources allowed us
to create a stable training data set that was only to a very small extent inaccurate (out of
397 households that provided information on heating, only 3 were implausible because a
heat pump was reported in the grid data but not in the survey data). To this comparably
comprehensive dataset, we applied five machine learning algorithms and tested whether
geographical information can help—in addition to weather and smart meter data which
was already tested in earlier studies (Fei et al. 2013; Hopf et al. 2018)—to predict the exis-
tence of heat pumps. We could predict the existence of heat pumps with an AUC of up to
0.82 (F1 < 0.74). These results are on a comparable level to the results of existing studies.
Fei et al. (2013) achieved a performance of (F; < 0.86), whereas (Hopf et al. 2018) could
predict the existence of heat pumps with a performance of (AUC = 0.677). Thus, our
work replicates their findings with a novel dataset. This suggests that these studies do not
report dataset-specific findings and that the prediction models are relatively stable.

In addition to earlier studies, we assessed whether the use of further data sources (i.e.,
geographic information) can improve the prediction performance. There, we tested dif-
ferent combinations of feature sets that stem from three for grid operators available
data sources (smart meter data, weather data, geographical data). Our results show that
smart meter data alone allow good prediction results for the detection of the existence
of a heat pump. Additional geographical information such as the solar cadaster dataset,
containing basic building characteristics and estimations on the heat energy demand,
improves the prediction marginally, whereas weather information considerably improves
the prediction.

Finally, we tested the predictability of heat pump characteristics that are particularly
interesting for energy efficiency campaigns. The heat pump reservoir (ground source vs.
air source) could be predicted with an AUC of 0.86 and the heat pump age with an AUC
of 0.73. Both prediction performances are significantly higher than AUC of 0.5, which
means that the predictions are clearly better than random. A priori knowledge on the
heat pump existence (two class prediction of known installations) could not improve the
prediction of the heat pump reservoir. One reason for this could be that the number of
training examples (n=87) was to small to build a reliable model in the two class prediction



Weigert et al. Energy Informatics 2020, 3(Suppl 1):21 Page 12 of 14

whereas the availability of a larger set of negative examples in the three class prediction
increases the ability to detect heat pump specific characteristics. The age of the heat pump
could be predicted with an AUC uf up to 0.726 (heat pumps older than 20 years), but not
reliably, because of the large standard deviation of AUC based on our training sample. We
expect that a training dataset with more heat pump observations will provide more stable
results.

Implications for research and practice

We can derive two implications from our study regarding the detection of existing
heat pumps. First, the number of ground truth data necessary to train prediction mod-
els does not need to be large (a dataset with less than 400 households was sufficient
in our study to achieve a successful prediction). Second, selecting the right period of
smart meter data matters. This finding is in line with previous research (Hopf et al.
2018), indicating that the detection of heat pumps would perform better in the win-
ter months than in the summer, given the data from one year. With our data, we can
confirm this finding with data over a period of more than three years. We explain this
higher performance with the typical consumption patterns of heat pumps attributable
to space heating in the winter. Only a small portion of heat energy is consumed dur-
ing the summer for hot water production. This decreases the predictability in the
respective times in summer. We conclude that the right choice of the observation
period (e.g., month November to February) allows to reduce the size of the required
dataset.

Limitations and future research

There are some limitations that should be addressed in future studies. First, we have
not carried out a detailed parameter tuning to optimize the machine learning algo-
rithms for heat pump detection. This has the potential to significantly boost the per-
formance but conveys the risk of overfitting the models to the data. Although our
dataset is comprehensive in terms of the time span of the observations, it has only
a moderate number of different households what makes parameter tuning difficult.
Consequently, our results are conservative in terms of the maximum achievable per-
formance. Second, this work considers only data from residential households in central
Switzerland where heat pumps are primarily used for heating. These results could be
transferable to countries with similar climatic conditions but not to regions where
heat pumps are used in a dual-use mode to heat and cool buildings, e.g. climatic hot
regions in Greece (Karytsas and Choropanitis 2017). Third, further household infor-
mation, like building characteristics or the number of residents in a household that
have a large impact on the heat energy used, could improve the prediction perfor-
mance of the investigated models significantly. This could also be included in future

works.
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