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Goals

▶ know the tasks of OSes
▶ know file-, user-, and process-management
▶ know how to work with files, paths, and file permissions
▶ know the tasks of device drivers



Prep

▶ which OSes are popular?
▶ what do you expect from your OS?
▶ imagine that you use your smartphone without an OS? How

would it work?
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Figure 1: Golftheman [CC BY-SA 3.0]

https://creativecommons.org/licenses/by-sa/3.0


Loving & hating OSes

OS is like a bureaucratic organization

▶ it is not productive

▶ it makes us angry
▶ but w/o it nothing works.
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Loving & hating OSes

OS is like a bureaucratic organization

▶ it is not productive
▶ it makes us angry
▶ but w/o it nothing works.



Definition

▶ operation system abbreviated as OS
▶ a platform for running application software
▶ applications mostly run on operating systems

▶ some low-resource computers (e.g., embedded systems) work
without operating systems



Examples

Android, iOS for smartphones

Windows, macOS, Linux for PCs, laptops, servers



Most popular OS

what is the most popular OS?

▶ in Germany
▶ in India
▶ worldwide

https://gs.statcounter.com/os-market-share/all/germany
https://gs.statcounter.com/os-market-share/all/india
https://gs.statcounter.com/os-market-share


OS Tasks

mainly resource management, e.g., management of:

▶ files
▶ users
▶ processes



Discussion - OS tasks

do you have other other OS tasks in mind?



OS Tasks II

hardware abstraction

▶ copy these two files to this directory
▶ I do not care how you do it
▶ you copy the file the same way from a USB-drive and digital

camera



OS classification

functional perspective:

▶ OS for embedded devices, e.g., bike computer, smartwatch
▶ for PCs, e.g., Windows and Linux
▶ OS for a mainframe

https://en.wikipedia.org/wiki/Mainframe_computer


OS classification II

origins:

▶ from Unix: Linux, MacOS, Solaris
▶ from MS-DOS: MS-DOS, DR-DOS, Windows
▶ standalone: PalmOS, BeOS, IBM OS/2



System software

▶ software which is not application software
▶ provides a platform for running application software
▶ e.g., OS, device drivers, BIOS, game engine

▶ system software cannot be uninstalled without affecting
application software, but application software can



Windows

▶ most popular OS on PCs
▶ most office programs run on Windows
▶ nowadays Windows 10 on most PCs



Windows 11 or 12?

▶ probably there will be no Windows 11 or 12 soon
▶ Windows releases an incremental update every six months
▶ e.g., 1903, 1909,...

https://support.microsoft.com/en-us/help/13853/windows-lifecycle-fact-sheet


Linux (OS)

▶ a family of open source Unix-like OS based on the Linux kernel,
e.g.

▶ free: Ubuntu, Debian, CentOS, openSUSE
▶ commercial: Red Hat Enterprise Linux, SUSE Linux Enterprise

▶ Unix-like, but not Unix
▶ Linux-is-not-Unix



Discussion - Linux popularity

▶ did you try Linux before?
▶ is it convenient compared to Windows or MacOS?
▶ why is Linux so popular among scientists and computer guys?



File management problem

▶ we have different kinds of files, e.g., text, picture, movies,
programs

▶ with different sizes

How can we organize these files and access them fast?



File management solution

▶ store them as byte sequences
▶ give them names
▶ create a directory tree for organization



Files

▶ a file is a sequence of bytes
▶ smallest file can be 0 Bytes and max. file size many GBs
▶ typical naming name.suffix
▶ when working with shell, users typically avoid spaces in

filenames



Directories

▶ directories can contain:
▶ directories
▶ files (including links or shortcuts)

▶ the beginning of the directory tree is called root



Directory tree Linux

/

▶ home
▶ goekce

▶ diary.txt
▶ charu

▶ 20200912_scan.pdf
▶ etc

▶ hostname



Directory tree Windows

C:\

▶ Users
▶ Program Files
▶ Windows



File path

the address of a file on your computer, e.g.:

/home/goekce/diary.txt



Absolute vs relative paths

▶ absolute: /home/goekce/diary.txt
▶ relative: ../../elephant.jpg
▶ .. means jump one directory higher



Exercise - file paths

which path is described by
/usr/../home/tantau/../../dev/null?



Relative paths

▶ relative paths help us to conveniently access files which are
nearby

▶ .. means one level higher
▶ . means this directory



Relative paths example

▶ you want to open slides which are on:

/home/charu/uni/WS2021/iti/slides/

▶ instead of:

pdfviewer /home/charu/uni/WS2021/iti/slides/1.pdf
pdfviewer /home/charu/uni/WS2021/iti/slides/2.pdf

▶ change the directory and open them w/o the long path:

cd /home/charu/uni/WS2021/iti
pdfviewer slides/1.pdf



Exercise - rel. paths

you are on /home/charu/slides/text.

▶ which file is addressed by ../img/paneer.jpg
▶ which file is addressed by

../../../goekce/exams/../../charu/plan.txt



Discussion - abs./rel. paths

when would you prefer an absolute/relative path?



User management - goals

▶ many users should be able to store their data on a single system
▶ public files should be readable by users, private files not



User management - solution

▶ every user has a private directory
▶ access rights for every file
▶ OS identifies the users by their username and password

(authentification)



File rights in Unix

every file belongs to:

▶ a user. Generally user is the creator of the file.
▶ a group. users can belong to various groups.

Example:

$ ls -l diary.txt
-rw-r--r-- 1 charu students 498660 Sep 12 08:51 diary.txt



User & group

▶ only the user can change its rights who the file belongs to
▶ group has the permissions in file file attributes listed with ls

-l



File permissions in Unix

three permissions:

1. read r
2. write w
3. execute x



File perm. - example

-rwxr--r-- 1 u u 498660 Sep 12 08:51 search.sh

read write execute
user yes yes yes
group yes no no
other yes no no



Exercise - file perm.

file user group others
apple.txt eva eden rwxr-----
snake.txt adam eden rw-rw-r--
eat adam men rwxrwxr-x

which files can Adam and Eva write/read?



Exercise - file perm. II

go to your home folder in Linux and look at the permissions of the
files. Who can read, write to your files?



Process management - goals

▶ users should be able to start multiple processes in parallel
▶ if a process does evil things, the system must be able to stop it
▶ a user should only be able to stop their process
▶ the system must be able to prioritize crucial processes



Process management - solution

▶ the OS implements a process list
▶ every process gets an id and belongs to a user
▶ (only) the user can stop/kill their process
▶ the OS can give different priorities to processes



OS layers - motivation

example: print job management

1. management of print jobs
2. communicating with different models of printers

How do we achieve this versatility?



OS layers - solution

.
applications

|
HW independent mgmt. <

| < OS
HW driver <

|
HW



Below - driver

a driver is a program for controlling specific hardware

▶ e.g., a desktop printer needs different instructions than a big
office printer.

▶ a printer driver is generally not involved in print queue
management, e.g., cancel a file in print queue



Above - shell, system calls

▶ users interact with OS using:
▶ shell
▶ GUI, e.g., Start -> File Manager

▶ programs interact with OS using:

▶ shell

▶ system calls



Above - shell, system calls

▶ users interact with OS using:
▶ shell
▶ GUI, e.g., Start -> File Manager

▶ programs interact with OS using:

▶ shell
▶ system calls



Summary

▶ OS manages resources, e.g., hardware, processes, files, users
▶ files have a name, permissions, a user, a group, size
▶ directory tree
▶ access permissions rwx
▶ permissions for user group others



Appendix
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Figure 2: Werner Fischer and Georg Schönberger [CC BY-SA 3.0]

https://commons.wikimedia.org/wiki/User:Wfischer
https://creativecommons.org/licenses/by-sa/3.0


Virtualization

▶ creating a virtual, rather than actual version of something



Hardware Virtualization
▶ e.g., Virtualbox
▶ host vs guest system

Figure 3: Kwesterh [Public domain]



Desktop Virtualization

▶ working directly on a remote server
▶ e.g.,

▶ remote desktop
▶ JupyterHub
▶ SSH connection (remote command-shell)



Ex. Thin client

Figure 4: VIA Gallery from Hsintien, Taiwan [CC BY 2.0]

https://creativecommons.org/licenses/by/2.0


Thin vs Thick client

Figure 5



Thin vs Thick client II

▶ thin clients rely on a remote server
▶ e.g., ChromeOS, web browser

▶ easy to administer
▶ less hardware resources

▶ cheaper than a usual PC
▶ depends on a fast network connection
▶ data mostly stored on servers

https://geizhals.de/?cat=sysdivtc&sort=p#productlist


UNIX & Unix-like OS
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Figure 6: Guillem, Wereon, Hotmocha [Public domain]



Unix

▶ a family of OS that evolved from the works in the 1970s at the
Bell Labs

▶ UNIX
▶ is a specification (standard) for an OS, is a trademark

▶ e.g., an Unix OS must include awk, cd, ls
▶ e.g., macOS, z/OS
▶ requires certification by a consortium



Unix-like OS

▶ OS is based on the Unix
▶ e.g., Linux, Android (Android is also based on Linux)
▶ an Unix-like OS behaves like a Unix system, but is not certified



Unix characteristics

▶ Unix philosophy
▶ modular design
▶ a unified filesystem, i.e., /a/b/c
▶ portable (written in C)



GNU Project

▶ 1983, free software project
▶ alternative to proprietary Unix
▶ software should be freely

▶ run
▶ copied
▶ studied
▶ modified

Figure 7: Aurelio A.
Heckert [CC BY-SA
2.0]

▶ GNU is not Unix!

https://creativecommons.org/licenses/by-sa/2.0
https://creativecommons.org/licenses/by-sa/2.0


GNU Project II

▶ goal was to build a free OS
▶ kernel
▶ software tools, e.g., awk, sed

▶ GNU kernel was not successful
▶ instead Linux kernel



GNU Project III

▶ GNU tools are used in most Linux OS
▶ gawk → GNU-awk
▶ generally it does not matter if you run awk or gawk

▶ meaning of Linux nowadays
▶ a Linux distribution, e.g., Ubuntu



Linux distribution

▶ short: distro
▶ a software collection based on the Linux kernel

▶ cf. Anaconda — a Python distribution
▶ typically comprises

▶ Linux kernel
▶ GNU tools, libraries
▶ additional software
▶ documentation
▶ graphical interface



Graphical interface
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Figure 8: Shmuel Csaba Otto Traian [CC BY-SA 3.0]

https://creativecommons.org/licenses/by-sa/3.0


Desktop environments

▶ implements the desktop metaphor
▶ graphical shell for the OS on PCs
▶ easily access and edit files

▶ e.g., Fluent (Win10), Aqua (macOS), Unity (Ubuntu), KDE,
GNOME, LXDE

▶ command shell is used for advanced operations

Discussion - desktop env. -----------------------

what should a desktop environment provide?



Desktop env. features

▶ a desktop + window system
▶ interaction using mouse and keyboard
▶ status bar, file manager, start menu, text editor
▶ a toolkit to program your own GUIs



Graphical widget

▶ an element of interaction
with OS

▶ window gadget
▶ e.g., OK button analogy

to push-buttons on
physical devices

Figure 9



Example

zenity --question --text="Cancel the class?"
if [ $? -eq '0' ]; then exit; fi



Different OS versions

▶ Ubuntu server has four different versions
▶ e.g., x64, ARM, PowerPC, IBM Z

▶ these versions resemble different processor architectures
▶ each processor architecture has an instruction set

▶ e.g., x64: add two 64 bit numbers
▶ x86 does not have the former instruction

https://ubuntu.com/download/server


32- vs 64-bit OS

▶ 64-bit OS is designed for 64-bit processors
▶ nowadays most processors on PCs and smartphones have 64-bit

processors
▶ so the operating systems are also 64-bit

▶ an 64-bit processor can handle 64-bit in each clock cycle



32- vs 64-bit applications

▶ even most OS nowadays are 64-bit, some older applications do
not have 64-bit versions

▶ e.g., look at C:Program Files (x86)
▶ fortunately, an 64-bit OS can also run 32-bit applications



Long term support vs latest features

▶ long term support release
▶ does not get updated regularly

▶ removes the need for frequent software migration
▶ mostly security updates and crash fixes
▶ useful for long term projects
▶ e.g., Firefox ESR, Ubuntu LTS
▶ you do not get the latest features

https://www.mozilla.org/en-US/firefox/enterprise/


OS Components

▶ kernel
▶ networking
▶ security
▶ user interface (shell)



Kernel

CPU Memory Devices

Kernel

Applications

Figure 10: Bobbo [CC BY-SA 3.0]

https://creativecommons.org/licenses/by-sa/3.0


Kernel functions

▶ orchestrates access to hardware
▶ e.g., CPU, memory, devices
▶ which program is allowed to use the processor right now?

▶ controls communications between different running programs
(processes)

▶ e.g., program a wants to send data to program b
▶ kernel can also prohibit this access
▶ kernel is like the housekeeper for programs



Kernel functions II

▶ manages memory
▶ programs do not have to know how much RAM exists

▶ abstraction
▶ programs see a file system but not directly your hard-disk or

SSD
▶ has a consistent API for application software

▶ rarely changes that existing programs run for a long time



Kernel functions III

▶ manages device drivers
▶ device driver is a software for controlling a specific hardware
▶ the Linux kernel typically contains modern hardware drivers
▶ Windows 10 can automatically install them, or you have to

install them manually



Linux (kernel)

▶ a kernel written by Linus Torvalds in 1991
▶ free alternative to the kernel in Unix-based systems
▶ a good example for open source collaboration at the beginning

of internet
▶ Linux-based OS—if the OS uses Linux kernel

▶ used in
▶ PC, servers, smartphone
▶ WLAN routers, TVs



Other kernels

▶ there is not only Linux, e.g.,
▶ FreeBSD kernel
▶ NetBSD kernel
▶ Solaris kernel
▶ Windows NT kernel



Question

▶ open a command-line on your Linux, and go to the root
directory:

ls /

▶ what could be these directories for?



Unix filesystem
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Figure 11: Ppgardne [CC BY-SA 4.0]

https://commons.wikimedia.org/wiki/User:Ppgardne
https://creativecommons.org/licenses/by-sa/4.0


Shell kernel metaphor

Figure 12: Potkettle [CC BY 3.0]

https://creativecommons.org/licenses/by/3.0


Shell

▶ required if human-interaction needed
▶ command-line interface
▶ graphical user interface



Security

▶ authentication
▶ who is the user?
▶ e.g., a normal user or administrator

▶ authorization
▶ what is the user allowed to do?
▶ e.g., the right to install programs



Networking

▶ OS implements networking functions
▶ open networking protocols

▶ e.g., Windows can communicate with Linux OS through the
Internet Protocol

▶ vendor-specific protocols
▶ e.g., Server Message Block (SMB) from Microsoft for shared

access to files, printers



Firmware

▶ device-specific software for an embedded
device

▶ does not get updated very often
▶ e.g., your computer’s BIOS
▶ the software that you flash to your

Arduino board
▶ the software for your car’s brake

controller

Figure 13: Public
Domain

▶ cf. OS, which gets updated regularly



Files

▶ computer resource for recording data discretely
▶ e.g., text, photo, computer program
▶ on Unix-like systems can be also a device or virtual resource

▶ e.g., /dev/sdb, /dev/null
▶ paper analogy
▶ file format

▶ based on file extension on Windows
▶ based on the file signature on Linux

https://en.wikipedia.org/wiki/List_of_file_signatures


File corruption

▶ if a file cannot be properly read
▶ when can it happen?

▶ an image editing program crashes
while saving the image file

▶ removing a USB stick before
unmounting

▶ physical damage
▶ aging of the disk

Figure 14: Jim Salter [CC
BY-SA 4.0]

https://creativecommons.org/licenses/by-sa/4.0
https://creativecommons.org/licenses/by-sa/4.0


Task

▶ a unit of work for a computer
▶ also called: process, thread

▶ multitasking, multiprocessing, multithreading

Figure 15: I, Cburnett [CC BY-SA 3.0]

https://creativecommons.org/licenses/by-sa/3.0
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