
Operating Systems

Gökçe Aydos

https://aydos.de/uni

This work is licensed under CC BY 4.0

https://creativecommons.org/licenses/by/4.0

Lecture

Goals

▶ know the tasks of OSes
▶ know file-, user-, and process-management
▶ know how to work with files, paths, and file permissions
▶ know the tasks of device drivers

Prep

▶ which OSes are popular?
▶ what do you expect from your OS?
▶ imagine that you use your smartphone without an OS? How

would it work?

OS Level

Operating system

User

Application

Hardware

Figure 1: Golftheman [CC BY-SA 3.0]

https://creativecommons.org/licenses/by-sa/3.0

Loving & hating OSes

OS is like a bureaucratic organization

▶ it is not productive

▶ it makes us angry
▶ but w/o it nothing works.

Loving & hating OSes

OS is like a bureaucratic organization

▶ it is not productive
▶ it makes us angry

▶ but w/o it nothing works.

Loving & hating OSes

OS is like a bureaucratic organization

▶ it is not productive
▶ it makes us angry
▶ but w/o it nothing works.

Definition

▶ operation system abbreviated as OS
▶ a platform for running application software
▶ applications mostly run on operating systems

▶ some low-resource computers (e.g., embedded systems) work
without operating systems

Examples

Android, iOS for smartphones

Windows, macOS, Linux for PCs, laptops, servers

Most popular OS

what is the most popular OS?

▶ in Germany
▶ in India
▶ worldwide

https://gs.statcounter.com/os-market-share/all/germany
https://gs.statcounter.com/os-market-share/all/india
https://gs.statcounter.com/os-market-share

OS Tasks

mainly resource management, e.g., management of:

▶ files
▶ users
▶ processes

Discussion - OS tasks

do you have other other OS tasks in mind?

OS Tasks II

hardware abstraction

▶ copy these two files to this directory
▶ I do not care how you do it
▶ you copy the file the same way from a USB-drive and digital

camera

OS classification

functional perspective:

▶ OS for embedded devices, e.g., bike computer, smartwatch
▶ for PCs, e.g., Windows and Linux
▶ OS for a mainframe

https://en.wikipedia.org/wiki/Mainframe_computer

OS classification II

origins:

▶ from Unix: Linux, MacOS, Solaris
▶ from MS-DOS: MS-DOS, DR-DOS, Windows
▶ standalone: PalmOS, BeOS, IBM OS/2

System software

▶ software which is not application software
▶ provides a platform for running application software
▶ e.g., OS, device drivers, BIOS, game engine

▶ system software cannot be uninstalled without affecting
application software, but application software can

Windows

▶ most popular OS on PCs
▶ most office programs run on Windows
▶ nowadays Windows 10 on most PCs

Windows 11 or 12?

▶ probably there will be no Windows 11 or 12 soon
▶ Windows releases an incremental update every six months
▶ e.g., 1903, 1909,...

https://support.microsoft.com/en-us/help/13853/windows-lifecycle-fact-sheet

Linux (OS)

▶ a family of open source Unix-like OS based on the Linux kernel,
e.g.

▶ free: Ubuntu, Debian, CentOS, openSUSE
▶ commercial: Red Hat Enterprise Linux, SUSE Linux Enterprise

▶ Unix-like, but not Unix
▶ Linux-is-not-Unix

Discussion - Linux popularity

▶ did you try Linux before?
▶ is it convenient compared to Windows or MacOS?
▶ why is Linux so popular among scientists and computer guys?

File management problem

▶ we have different kinds of files, e.g., text, picture, movies,
programs

▶ with different sizes

How can we organize these files and access them fast?

File management solution

▶ store them as byte sequences
▶ give them names
▶ create a directory tree for organization

Files

▶ a file is a sequence of bytes
▶ smallest file can be 0 Bytes and max. file size many GBs
▶ typical naming name.suffix
▶ when working with shell, users typically avoid spaces in

filenames

Directories

▶ directories can contain:
▶ directories
▶ files (including links or shortcuts)

▶ the beginning of the directory tree is called root

Directory tree Linux

/

▶ home
▶ goekce

▶ diary.txt
▶ charu

▶ 20200912_scan.pdf
▶ etc

▶ hostname

Directory tree Windows

C:\

▶ Users
▶ Program Files
▶ Windows

File path

the address of a file on your computer, e.g.:

/home/goekce/diary.txt

Absolute vs relative paths

▶ absolute: /home/goekce/diary.txt
▶ relative: ../../elephant.jpg
▶ .. means jump one directory higher

Exercise - file paths

which path is described by
/usr/../home/tantau/../../dev/null?

Relative paths

▶ relative paths help us to conveniently access files which are
nearby

▶ .. means one level higher
▶ . means this directory

Relative paths example

▶ you want to open slides which are on:

/home/charu/uni/WS2021/iti/slides/

▶ instead of:

pdfviewer /home/charu/uni/WS2021/iti/slides/1.pdf
pdfviewer /home/charu/uni/WS2021/iti/slides/2.pdf

▶ change the directory and open them w/o the long path:

cd /home/charu/uni/WS2021/iti
pdfviewer slides/1.pdf

Exercise - rel. paths

you are on /home/charu/slides/text.

▶ which file is addressed by ../img/paneer.jpg
▶ which file is addressed by

../../../goekce/exams/../../charu/plan.txt

Discussion - abs./rel. paths

when would you prefer an absolute/relative path?

User management - goals

▶ many users should be able to store their data on a single system
▶ public files should be readable by users, private files not

User management - solution

▶ every user has a private directory
▶ access rights for every file
▶ OS identifies the users by their username and password

(authentification)

File rights in Unix

every file belongs to:

▶ a user. Generally user is the creator of the file.
▶ a group. users can belong to various groups.

Example:

$ ls -l diary.txt
-rw-r--r-- 1 charu students 498660 Sep 12 08:51 diary.txt

User & group

▶ only the user can change its rights who the file belongs to
▶ group has the permissions in file file attributes listed with ls

-l

File permissions in Unix

three permissions:

1. read r
2. write w
3. execute x

File perm. - example

-rwxr--r-- 1 u u 498660 Sep 12 08:51 search.sh

read write execute
user yes yes yes
group yes no no
other yes no no

Exercise - file perm.

file user group others
apple.txt eva eden rwxr-----
snake.txt adam eden rw-rw-r--
eat adam men rwxrwxr-x

which files can Adam and Eva write/read?

Exercise - file perm. II

go to your home folder in Linux and look at the permissions of the
files. Who can read, write to your files?

Process management - goals

▶ users should be able to start multiple processes in parallel
▶ if a process does evil things, the system must be able to stop it
▶ a user should only be able to stop their process
▶ the system must be able to prioritize crucial processes

Process management - solution

▶ the OS implements a process list
▶ every process gets an id and belongs to a user
▶ (only) the user can stop/kill their process
▶ the OS can give different priorities to processes

OS layers - motivation

example: print job management

1. management of print jobs
2. communicating with different models of printers

How do we achieve this versatility?

OS layers - solution

.
applications

|
HW independent mgmt. <

| < OS
HW driver <

|
HW

Below - driver

a driver is a program for controlling specific hardware

▶ e.g., a desktop printer needs different instructions than a big
office printer.

▶ a printer driver is generally not involved in print queue
management, e.g., cancel a file in print queue

Above - shell, system calls

▶ users interact with OS using:
▶ shell
▶ GUI, e.g., Start -> File Manager

▶ programs interact with OS using:

▶ shell

▶ system calls

Above - shell, system calls

▶ users interact with OS using:
▶ shell
▶ GUI, e.g., Start -> File Manager

▶ programs interact with OS using:

▶ shell
▶ system calls

Summary

▶ OS manages resources, e.g., hardware, processes, files, users
▶ files have a name, permissions, a user, a group, size
▶ directory tree
▶ access permissions rwx
▶ permissions for user group others

Appendix

Abstraction example — Storage

Applications (processes)

VFS

Request-based
device mapper targets

dm-multipath

Physical devices

HDD SSD DVD
drive

Micron
PCIe card

LSI
RAID

Adaptec
RAID

Qlogic
HBA

Emulex
HBA

malloc

BIOs (block I/Os)

sysfs
(transport attributes) SCSI upper level drivers

/dev/sda

scsi-mq

.../dev/sd*

SCSI low level drivers
megaraid_sas

aacraid

qla2xxx ...libata

ahci ata_piix ... lpfc

Transport classes
scsi_transport_fc

scsi_transport_sas

scsi_transport_...

/dev/vd*

virtio_blk mtip32xx

/dev/rssd*

ext2 ext3

btrfs

ext4 xfs

ifs iso9660

...

NFS coda
Network FS

gfs ocfs

smbfs ...

Pseudo FS Special
purpose FSproc sysfs

futexfs

usbfs ...

tmpfs ramfs

devtmpfs
pipefs

network

nvme
device

The Linux Storage Stack Diagram
version 4.0, 2015-06-01

outlines the Linux storage stack as of Kernel version 4.0

mmap
(anonymous pages)

iscsi_tcp

network

/dev/rbd*

Block-based FS

re
a
d

(2
)

w
ri

te
(2

)

o
p

e
n

(2
)

st
a
t(

2
)

c
h

m
o
d

(2
)

..
.

Page
cache

mdraid
...

stackable

Devices on top of “normal”
block devices drbd

(optional)

LVM
BIOs (block I/Os)

BIOs BIOs

Block Layer

multi queue

blkmq

Software
queues

Hardware
dispatch
queues

...

...

hooked in device drivers
(they hook in like stacked
devices do)

BIOs

Maps BIOs to requests

deadline

cfq
noop

I/O scheduler

Hardware
dispatch
queue

Request
based drivers

BIO
based drivers

Request
based drivers

ceph

struct bio
- sector on disk

- bio_vec cnt
- bio_vec index
- bio_vec list

- sector cnt

Fi
b

re
 C

h
a
n

n
e
l

o
v
e
r

E
th

e
rn

e
t

LIO

target_core_mod

tc
m

_f
c

Fi
re

W
ir

e

IS
C

S
I

Direct I/O
(O_DIRECT)

device mapper

network

is
c
si

_t
a
rg

e
t_

m
o
d

sb
p

_t
a
rg

e
t

target_core_file

target_core_iblock

target_core_pscsi

vfs_writev, vfs_readv, ...

dm-crypt dm-mirror
dm-thindm-cache

tc
m

_q
la

2
x
x
x

tc
m

_u
sb

_g
a
d

g
e
t

U
S

B

Fi
b

re
 C

h
a

n
n

e
l

tc
m

_v
h

o
st

V
ir

tu
a

l H
o

st

/dev/nvme*n*

SCSI mid layer

virtio_pci

LSI 12Gbs
SAS HBA

mpt3sas

bcache

/dev/nullb*

vmw_pvscsi

/dev/skd*

skd

stec
device

virtio_scsi

para-virtualized
SCSI

VMware's
para-virtualized

SCSI

target_core_user

unionfs FUSE

/dev/mmcblk*p*

dm-raid

/dev/sr* /dev/st*

pm8001

PMC-Sierra
HBA

SD-/MMC-Card

/dev/rsxx*

rsxx

IBM flash
adapter

/dev/zram*

memory

null_blk

ufs

userspace

ecryptfs

Stackable FS

mobile device
flash memory

nvme

overlayfs

userspace (e.g. sshfs)

mmcrbdzram

dm-delay

Figure 2: Werner Fischer and Georg Schönberger [CC BY-SA 3.0]

https://commons.wikimedia.org/wiki/User:Wfischer
https://creativecommons.org/licenses/by-sa/3.0

Virtualization

▶ creating a virtual, rather than actual version of something

Hardware Virtualization
▶ e.g., Virtualbox
▶ host vs guest system

Figure 3: Kwesterh [Public domain]

Desktop Virtualization

▶ working directly on a remote server
▶ e.g.,

▶ remote desktop
▶ JupyterHub
▶ SSH connection (remote command-shell)

Ex. Thin client

Figure 4: VIA Gallery from Hsintien, Taiwan [CC BY 2.0]

https://creativecommons.org/licenses/by/2.0

Thin vs Thick client

Figure 5

Thin vs Thick client II

▶ thin clients rely on a remote server
▶ e.g., ChromeOS, web browser

▶ easy to administer
▶ less hardware resources

▶ cheaper than a usual PC
▶ depends on a fast network connection
▶ data mostly stored on servers

https://geizhals.de/?cat=sysdivtc&sort=p#productlist

UNIX & Unix-like OS

System III & V family

BSD (Berkeley Software Distribution)

FreeBSD

NetBSD

OpenBSD

SunOS

Solaris

NextStep

Xenix OS

GNU

Linux

CommercialUNIX

HP-UX

AIX

UnixWare

IRIX

BSD family

1970 1980 1990 2000 Time

Microsoft/SCO

Richard Stallman

Darwin

GNU/Hurd

Linus Torvalds

Andrew S. Tanenbaum

Minix

3.3

6.5.30

4.1.4

Research UNIX 10.5

Bell Labs: Ken Thompson,
Dennis Ritchie, et al.

Bill Joy

AT&T

IBM

SGI

Univel/SCO

2010

4.4

6.6

12.0

macOS 10.15

8.1

11.4

7.2

11i v 3

5.3

3.4

19.0

Sun/Oracle

Apple

Theo de Raadt

0.9

Matthew Dillon

DragonFly BSD 5.6

Figure 6: Guillem, Wereon, Hotmocha [Public domain]

Unix

▶ a family of OS that evolved from the works in the 1970s at the
Bell Labs

▶ UNIX
▶ is a specification (standard) for an OS, is a trademark

▶ e.g., an Unix OS must include awk, cd, ls
▶ e.g., macOS, z/OS
▶ requires certification by a consortium

Unix-like OS

▶ OS is based on the Unix
▶ e.g., Linux, Android (Android is also based on Linux)
▶ an Unix-like OS behaves like a Unix system, but is not certified

Unix characteristics

▶ Unix philosophy
▶ modular design
▶ a unified filesystem, i.e., /a/b/c
▶ portable (written in C)

GNU Project

▶ 1983, free software project
▶ alternative to proprietary Unix
▶ software should be freely

▶ run
▶ copied
▶ studied
▶ modified

Figure 7: Aurelio A.
Heckert [CC BY-SA
2.0]

▶ GNU is not Unix!

https://creativecommons.org/licenses/by-sa/2.0
https://creativecommons.org/licenses/by-sa/2.0

GNU Project II

▶ goal was to build a free OS
▶ kernel
▶ software tools, e.g., awk, sed

▶ GNU kernel was not successful
▶ instead Linux kernel

GNU Project III

▶ GNU tools are used in most Linux OS
▶ gawk → GNU-awk
▶ generally it does not matter if you run awk or gawk

▶ meaning of Linux nowadays
▶ a Linux distribution, e.g., Ubuntu

Linux distribution

▶ short: distro
▶ a software collection based on the Linux kernel

▶ cf. Anaconda — a Python distribution
▶ typically comprises

▶ Linux kernel
▶ GNU tools, libraries
▶ additional software
▶ documentation
▶ graphical interface

Graphical interface

hardware

user

graphical interface

display server window manager

kernel

Examples:
KDE Plasma, Aqua,
GNOME Shell

Examples:
Linux kernel, FreeBSD kernel, XNU kernel

Examples:
awesome, Compiz,
OpenBox

Examples:
X.Org Server, Weston, KWin, Mutter,
Quarz Compositor, SurfaceFlinger

Examples:
X11, Wayland, Quartz

Figure 8: Shmuel Csaba Otto Traian [CC BY-SA 3.0]

https://creativecommons.org/licenses/by-sa/3.0

Desktop environments

▶ implements the desktop metaphor
▶ graphical shell for the OS on PCs
▶ easily access and edit files

▶ e.g., Fluent (Win10), Aqua (macOS), Unity (Ubuntu), KDE,
GNOME, LXDE

▶ command shell is used for advanced operations

Discussion - desktop env. -----------------------

what should a desktop environment provide?

Desktop env. features

▶ a desktop + window system
▶ interaction using mouse and keyboard
▶ status bar, file manager, start menu, text editor
▶ a toolkit to program your own GUIs

Graphical widget

▶ an element of interaction
with OS

▶ window gadget
▶ e.g., OK button analogy

to push-buttons on
physical devices

Figure 9

Example

zenity --question --text="Cancel the class?"
if [$? -eq '0']; then exit; fi

Different OS versions

▶ Ubuntu server has four different versions
▶ e.g., x64, ARM, PowerPC, IBM Z

▶ these versions resemble different processor architectures
▶ each processor architecture has an instruction set

▶ e.g., x64: add two 64 bit numbers
▶ x86 does not have the former instruction

https://ubuntu.com/download/server

32- vs 64-bit OS

▶ 64-bit OS is designed for 64-bit processors
▶ nowadays most processors on PCs and smartphones have 64-bit

processors
▶ so the operating systems are also 64-bit

▶ an 64-bit processor can handle 64-bit in each clock cycle

32- vs 64-bit applications

▶ even most OS nowadays are 64-bit, some older applications do
not have 64-bit versions

▶ e.g., look at C:Program Files (x86)
▶ fortunately, an 64-bit OS can also run 32-bit applications

Long term support vs latest features

▶ long term support release
▶ does not get updated regularly

▶ removes the need for frequent software migration
▶ mostly security updates and crash fixes
▶ useful for long term projects
▶ e.g., Firefox ESR, Ubuntu LTS
▶ you do not get the latest features

https://www.mozilla.org/en-US/firefox/enterprise/

OS Components

▶ kernel
▶ networking
▶ security
▶ user interface (shell)

Kernel

CPU Memory Devices

Kernel

Applications

Figure 10: Bobbo [CC BY-SA 3.0]

https://creativecommons.org/licenses/by-sa/3.0

Kernel functions

▶ orchestrates access to hardware
▶ e.g., CPU, memory, devices
▶ which program is allowed to use the processor right now?

▶ controls communications between different running programs
(processes)

▶ e.g., program a wants to send data to program b
▶ kernel can also prohibit this access
▶ kernel is like the housekeeper for programs

Kernel functions II

▶ manages memory
▶ programs do not have to know how much RAM exists

▶ abstraction
▶ programs see a file system but not directly your hard-disk or

SSD
▶ has a consistent API for application software

▶ rarely changes that existing programs run for a long time

Kernel functions III

▶ manages device drivers
▶ device driver is a software for controlling a specific hardware
▶ the Linux kernel typically contains modern hardware drivers
▶ Windows 10 can automatically install them, or you have to

install them manually

Linux (kernel)

▶ a kernel written by Linus Torvalds in 1991
▶ free alternative to the kernel in Unix-based systems
▶ a good example for open source collaboration at the beginning

of internet
▶ Linux-based OS—if the OS uses Linux kernel

▶ used in
▶ PC, servers, smartphone
▶ WLAN routers, TVs

Other kernels

▶ there is not only Linux, e.g.,
▶ FreeBSD kernel
▶ NetBSD kernel
▶ Solaris kernel
▶ Windows NT kernel

Question

▶ open a command-line on your Linux, and go to the root
directory:

ls /

▶ what could be these directories for?

Unix filesystem

/ "root"

"essential user
command binaries"

bash
cat
chmod
cp
date
echo
grep
gunzip
gzip
hostname
kill
less
ln
ls
mkdir
more
mount
mv
nano
open
ping
ps
pwd
rm
sh
su
tar
touch
umount
uname

/bin
/dev
"device files
incl. /dev/null"

/home
"user home
directories"

/proc
"process & kernel
information files"

/lib
"libraries &
kernel modules"

/mnt
"mount files for
temporary
filesystems"

/usr
"read-only user application
support data & binaries"

"standard include
files for 'C' code"

"obj, bin, lib
files for coding
& packages"

/usr/bin
"most user
commands"

/usr/include

/usr/lib

/usr/local
"local software"

/usr/local/bin
/usr/local/lib
/usr/local/man
/usr/local/sbin
/usr/local/share

/usr/share
"static data sharable
accross all architectures"

/usr/share/man
"manual pages"

/etc
"configuration files
for the system"

crontab
cups
fonts
fstab
host.conf
hostname
hosts
hosts.allow
hosts.deny
init
init.d
issue
machine-id
mtab
mtools.conf
nanorc
networks
passwd
profile
protocols
resolv.conf
rpc
securetty
services
shells
timezone

/var
"variable data files"

/var/cache
"application
cache data"

"data modified as
programmes run"

/var/lib

"lock files to track
resources in use"

/var/lock

/var/log
"log files"

/var/spool
"tasks waiting to
be processed"

/var/spool/cron
/var/spool/cups
/var/spool/mail

/var/opt
"variable data for
installed packages"

/var/tmp
"temporary files saved
between reboots"

/sbin
"essential system
binaries"

fdisk
fsck
getty
halt
ifconfig
init
mkfs
mkswap
reboot
route

/opt
"optional software
applications"

/root
"home dir. for
the root user"

Figure 11: Ppgardne [CC BY-SA 4.0]

https://commons.wikimedia.org/wiki/User:Ppgardne
https://creativecommons.org/licenses/by-sa/4.0

Shell kernel metaphor

Figure 12: Potkettle [CC BY 3.0]

https://creativecommons.org/licenses/by/3.0

Shell

▶ required if human-interaction needed
▶ command-line interface
▶ graphical user interface

Security

▶ authentication
▶ who is the user?
▶ e.g., a normal user or administrator

▶ authorization
▶ what is the user allowed to do?
▶ e.g., the right to install programs

Networking

▶ OS implements networking functions
▶ open networking protocols

▶ e.g., Windows can communicate with Linux OS through the
Internet Protocol

▶ vendor-specific protocols
▶ e.g., Server Message Block (SMB) from Microsoft for shared

access to files, printers

Firmware

▶ device-specific software for an embedded
device

▶ does not get updated very often
▶ e.g., your computer’s BIOS
▶ the software that you flash to your

Arduino board
▶ the software for your car’s brake

controller

Figure 13: Public
Domain

▶ cf. OS, which gets updated regularly

Files

▶ computer resource for recording data discretely
▶ e.g., text, photo, computer program
▶ on Unix-like systems can be also a device or virtual resource

▶ e.g., /dev/sdb, /dev/null
▶ paper analogy
▶ file format

▶ based on file extension on Windows
▶ based on the file signature on Linux

https://en.wikipedia.org/wiki/List_of_file_signatures

File corruption

▶ if a file cannot be properly read
▶ when can it happen?

▶ an image editing program crashes
while saving the image file

▶ removing a USB stick before
unmounting

▶ physical damage
▶ aging of the disk

Figure 14: Jim Salter [CC
BY-SA 4.0]

https://creativecommons.org/licenses/by-sa/4.0
https://creativecommons.org/licenses/by-sa/4.0

Task

▶ a unit of work for a computer
▶ also called: process, thread

▶ multitasking, multiprocessing, multithreading

Figure 15: I, Cburnett [CC BY-SA 3.0]

https://creativecommons.org/licenses/by-sa/3.0

	Lecture
	Appendix

