Operating Systems

Gokece Aydos

https://aydos.de/uni

This work is licensed under CC BY 4.0 @ ®

https://creativecommons.org/licenses/by/4.0

Lecture

Goals

P know the tasks of OSes

P know file-, user-, and process-management

P know how to work with files, paths, and file permissions
P know the tasks of device drivers

Prep

P which OSes are popular?

P what do you expect from your OS?

P> imagine that you use your smartphone without an OS? How
would it work?

OS Level

Application

] [°

Operating system

] -

Hardware

Figure 1: Golftheman [CC BY-SA 3.0]

https://creativecommons.org/licenses/by-sa/3.0

Loving & hating OSes

OS is like a bureaucratic organization

P it is not productive

Loving & hating OSes

OS is like a bureaucratic organization

P it is not productive
P it makes us angry

Loving & hating OSes

OS is like a bureaucratic organization

P it is not productive
P it makes us angry
P but w/o it nothing works.

Definition

P operation system abbreviated as OS
P a platform for running application software

P applications mostly run on operating systems
P some low-resource computers (e.g., embedded systems) work
without operating systems

Examples

Android, iOS for smartphones

Windows, macOS, Linux for PCs, laptops, servers

Most popular OS

what is the most popular OS?

P in Germany
P in India
» worldwide

https://gs.statcounter.com/os-market-share/all/germany
https://gs.statcounter.com/os-market-share/all/india
https://gs.statcounter.com/os-market-share

OS Tasks

mainly resource management, e.g., management of:

P files
P users
P> processes

Discussion - OS tasks

do you have other other OS tasks in mind?

OS Tasks Il

hardware abstraction

P> copy these two files to this directory

P |/ do not care how you do it

P you copy the file the same way from a USB-drive and digital
camera

OS classification

functional perspective:

P OS for embedded devices, e.g., bike computer, smartwatch
P for PCs, e.g., Windows and Linux
P OS for a mainframe

https://en.wikipedia.org/wiki/Mainframe_computer

OS classification Il

origins:

P from Unix: Linux, MacOS, Solaris
P from MS-DOS: MS-DOS, DR-DOS, Windows
P standalone: PalmOS, BeOS, IBM 0S/2

System software

P> software which is not application software
P provides a platform for running application software
P eg., OS, device drivers, BIOS, game engine
P> system software cannot be uninstalled without affecting
application software, but application software can

Windows

P most popular OS on PCs
P most office programs run on Windows
P nowadays Windows 10 on most PCs

Windows 11 or 127

P probably there will be no Windows 11 or 12 soon
P Windows releases an incremental update every six months
P eg., 1903, 1909,...

https://support.microsoft.com/en-us/help/13853/windows-lifecycle-fact-sheet

Linux (OS)

P a family of open source Unix-like OS based on the Linux kernel,

e.g.
P free: Ubuntu, Debian, CentOS, openSUSE
P commercial: Red Hat Enterprise Linux, SUSE Linux Enterprise
P Unix-like, but not Unix

P Linux-is-not-Unix

Discussion - Linux popularity

P did you try Linux before?
P> is it convenient compared to Windows or MacOS?
P why is Linux so popular among scientists and computer guys?

File management problem

P we have different kinds of files, e.g., text, picture, movies,
programs
P with different sizes

How can we organize these files and access them fast?

File management solution

P> store them as byte sequences
P give them names
P> create a directory tree for organization

Files

P a file is a sequence of bytes

P> smallest file can be 0 Bytes and max. file size many GBs

P typical naming name.suffix

P when working with shell, users typically avoid spaces in
filenames

Directories

P directories can contain:
P directories
P files (including links or shortcuts)

P> the beginning of the directory tree is called root

Directory tree Linux

/

» home
P goekce
P diary.txt
P charu
» 20200912_scan.pdf
P etc

P hostname

Directory tree Windows

C:\
P Users

P Program Files
» Windows

File path

the address of a file on your computer, e.g.:

/home/goekce/diary.txt

Absolute vs relative paths

P absolute: /home/goekce/diary.txt
P relative: ../../elephant.jpg
P .. means jump one directory higher

Exercise - file paths

which path is described by
/usr/../home/tantau/../../dev/null?

Relative paths

P> relative paths help us to conveniently access files which are
nearby

P .. means one level higher

P . means this directory

Relative paths example

P you want to open slides which are on:
/home/charu/uni/WS2021/iti/slides/
P instead of:

pdfviewer /home/charu/uni/WS2021/iti/slides/1.pdf
pdfviewer /home/charu/uni/WS2021/iti/slides/2.pdf

P> change the directory and open them w/o the long path:

cd /home/charu/uni/wWS2021/iti
pdfviewer slides/1.pdf

Exercise - rel. paths

you are on /home/charu/slides/text.

P which file is addressed by ../img/paneer. jpg
P which file is addressed by
../../../goekce/exams/../../charu/plan.txt

Discussion - abs. /rel. paths

when would you prefer an absolute/relative path?

User management - goals

P many users should be able to store their data on a single system
P public files should be readable by users, private files not

User management - solution

P> every user has a private directory

P> access rights for every file

P OS identifies the users by their username and password
(authentification)

File rights in Unix

every file belongs to:

P a user. Generally user is the creator of the file.
P a group. users can belong to various groups.

Example:

$ 1s -1 diary.txt
-rw-r--r—-— 1 charu students 498660 Sep 12 08:51 diary.txt

User & group

P only the user can change its rights who the file belongs to
P> group has the permissions in file file attributes listed with 1s
-1

File permissions in Unix

three permissions:

1. read r
2. write w
3. execute x

File perm. - example

-rwxr--r-— 1 u u 498660 Sep 12 08:51 search.sh

read write execute
user yes yes yes
group yes no no
other yes no no

Exercise - file perm.

file user group others
apple.txt eva eden rwxr-----
snake.txt adam eden rw-rw-r--
eat adam men FWXIWXr-X

which files can Adam and Eva write/read?

Exercise - file perm. Il

go to your home folder in Linux and look at the permissions of the
files. Who can read, write to your files?

Process management - goals

P> users should be able to start multiple processes in parallel

P> if a process does evil things, the system must be able to stop it
P> a user should only be able to stop their process

P> the system must be able to prioritize crucial processes

Process management - solution

P the OS implements a process list

P> every process gets an id and belongs to a user
P (only) the user can stop/kill their process

P> the OS can give different priorities to processes

OS layers - motivation

example: print job management

1. management of print jobs
2. communicating with different models of printers

How do we achieve this versatility?

OS layers - solution

applications
I
HW independent mgmt. <
I < 0S
HW driver <
I
HW

Below - driver

a driver is a program for controlling specific hardware

P e.g., a desktop printer needs different instructions than a big
office printer.

P> a printer driver is generally not involved in print queue
management, e.g., cancel a file in print queue

Above - shell, system calls

P> users interact with OS using:

P shell

P GUI, e.g., Start -> File Manager
P programs interact with OS using:

P shell

Above - shell, system calls

P> users interact with OS using:

P shell

P GUI, e.g., Start -> File Manager
P programs interact with OS using:

P shell
P system calls

Summary

P OS manages resources, e.g., hardware, processes, files, users
P> files have a name, permissions, a user, a group, size

P directory tree

P> access permissions rwx

P> permissions for user group others

Appendix

Abstraction example — Storage

The Linux Storage Stack Diagram
verion 4.0 2015.06.01
cutines the Lint Sorage sack oo of Kbl version 4.0

C Ropieatons (roceee]

vis witew vis ready,

2 (optional)
810 (block 10s) Devices on top o
block devices

8105 (block 10s)

50 Joios

Block Layer

1/0 scheduler

Bios

hooked in device drivers
(they hook in ke stacked
devices do)

lsio
lbased drivers

imidager
o Catsima). @)
S| e
@)
e |G EE D
o () @)
[
[cam) ewrk
-

SCSTTow [evel drivers

S @D (EmmD fax
= o
‘ ‘ ‘ [Famy—
SN

https://commons.wikimedia.org/wiki/User:Wfischer
https://creativecommons.org/licenses/by-sa/3.0

Virtualization

W creating a virtual, rather than actual version of something

Hardware Virtualization

P e.g., Virtualbox
P host vs guest system

i

irtual Hardwar

e

Desktop Virtualization

P working directly on a remote server

> eg,

P remote desktop
P JupyterHub
P SSH connection (remote command-shell)

Ex. Thin client

y
J

[

Figure 4. VIA Gallery from Hsintien, Taiwan [CC BY 2.0]

https://creativecommons.org/licenses/by/2.0

Thin

vs Thick client

Thick Client

Interaction

\

Response

Thin Server

Program

Thin Client

Interaction

A

Thick Server

—

Response

Figure 5

Thin vs Thick client |l

P> thin clients rely on a remote server
P e.g., ChromeOS, web browser

P> easy to administer

P> less hardware resources
P cheaper than a usual PC

P depends on a fast network connection
P> data mostly stored on servers

https://geizhals.de/?cat=sysdivtc&sort=p#productlist

UNIX & Unix-like OS

1970 1980 1990 2000 2010 Time

FreeBsD 120]

Matthew Diflon

81]
Lo [openssn oe)
Theo de Rasdt
Darwin \19 0

NextStep 3.3

Microsoft/5C0 NUHurd 00

e

Richard Stallman inux =
Minix, Linus Torvalds ”

Andrew 5. Tanenbaum

Bell Labs: Ken Thompson,
Dennis Ritchie, et a.
Univel/SCO
Solaris 114]
Sun/Oracle

System Ill & V fami 11iv3]

72]

Figure 6: Guillem, Wereon, Hotmocha [Public domain]

Unix

P a family of OS that evolved from the works in the 1970s at the
Bell Labs
» UNIX

P> is a specification (standard) for an OS, is a trademark
» e.g., an Unix OS must include awk, cd, Is

P eg., macOS, z/0S

P> requires certification by a consortium

Unix-like OS

P OS is based on the Unix
P e.g., Linux, Android (Android is also based on Linux)
P an Unix-like OS behaves like a Unix system, but is not certified

Unix characteristics

P Unix philosophy

P modular design

P> a unified filesystem, i.e., /a/b/c
P portable (written in C)

GNU Project

P 1983, free software project

P> alternative to proprietary Unix
P software should be freely

run

copied

studied

modified

\ A A A4

P GNU is not Unix!

Figure 7: Aurelio A.
Heckert [CC BY-SA
2.0]

https://creativecommons.org/licenses/by-sa/2.0
https://creativecommons.org/licenses/by-sa/2.0

GNU Project Il

P goal was to build a free OS
P kernel
P software tools, e.g., awk, sed
P GNU kernel was not successful
P instead Linux kernel

GNU Project Il

P GNU tools are used in most Linux OS

P gawk — GNU-awk

P generally it does not matter if you run awk or gawk
P meaning of Linux nowadays

P a Linux distribution, e.g., Ubuntu

Linux distribution

P short: distro
P> a software collection based on the Linux kernel
P cf. Anaconda — a Python distribution
P typically comprises
P Linux kernel
P GNU tools, libraries
P additional software
P documentation
P graphical interface

Graphical interface

Examples:
KDE Plasma, Aqua, Examples:

GNOME Shell / X11, Wayland, Quartz
Examples:
awesome, Compiz,

OpenBox

Examples:
X.0rg Server, Weston, KWin, Mutter,
Quarz Compositor, SurfaceFlinger

Examples:
Linux kernel, FreeBSD kernel, XNU kernel

——

Figure 8: Shmuel Csaba Otto Traian [CC BY-SA 3.0]

https://creativecommons.org/licenses/by-sa/3.0

Desktop environments

P implements the desktop metaphor
P> graphical shell for the OS on PCs
P> easily access and edit files

P e.g., Fluent (Win10), Aqua (macOS), Unity (Ubuntu), KDE,
GNOME, LXDE
P command shell is used for advanced operations

Discussion - desktop env.

what should a desktop environment provide?

Desktop env. features

P a desktop + window system

P> interaction using mouse and keyboard

P> status bar, file manager, start menu, text editor
P a toolkit to program your own GUIs

Graphical widget

P an element of interaction
with OS
P window gadget
P eg., OK button analogy
to push-buttons on
physical devices

M OO Mac0s X

— Widget Toolkit —

Standard Widget N
v Efficient Punahleo
Cross Platform <

» Native Controls |5

[——) < > |
e

Figure 9

Example

zenity --question --text="Cancel the class?"
if [$7? -eq '0']; then exit; fi

Different OS versions

P Ubuntu server has four different versions
> e.g., x64, ARM, PowerPC, IBM Z
P> these versions resemble different processor architectures
P> each processor architecture has an instruction set
P c.g., x64: add two 64 bit numbers
P x86 does not have the former instruction

https://ubuntu.com/download/server

32- vs 64-bit OS

P> 64-bit OS is designed for 64-bit processors
P nowadays most processors on PCs and smartphones have 64-bit
processors
P so the operating systems are also 64-bit
P> an 64-bit processor can handle 64-bit in each clock cycle

32- vs 64-bit applications

P even most OS nowadays are 64-bit, some older applications do
not have 64-bit versions
P e.g., look at C:Program Files (x86)
P> fortunately, an 64-bit OS can also run 32-bit applications

Long term support vs latest features

P long term support release
P does not get updated regularly
P removes the need for frequent software migration
P mostly security updates and crash fixes
P useful for long term projects
P e.g., Firefox ESR, Ubuntu LTS
P you do not get the latest features

https://www.mozilla.org/en-US/firefox/enterprise/

OS Components

P kernel

P networking

P security

P> user interface (shell)

Kernel

\/
CPU

\/ |/
Memory| |Devices

Figure 10: Bobbo [CC BY-SA 3.0]

https://creativecommons.org/licenses/by-sa/3.0

Kernel functions

P> orchestrates access to hardware
> e.g., CPU, memory, devices
P which program is allowed to use the processor right now?
P> controls communications between different running programs
(processes)
e.g., program a wants to send data to program b
P> kernel can also prohibit this access
P kernel is like the housekeeper for programs

Kernel functions I

P manages memory
P programs do not have to know how much RAM exists
P> abstraction
P> programs see a file system but not directly your hard-disk or
SSD
P has a consistent API for application software
P> rarely changes that existing programs run for a long time

Kernel functions IlI

P manages device drivers
P> device driver is a software for controlling a specific hardware
P> the Linux kernel typically contains modern hardware drivers
P Windows 10 can automatically install them, or you have to
install them manually

Linux (kernel)

P 2 kernel written by Linus Torvalds in 1991
P> free alternative to the kernel in Unix-based systems
P a good example for open source collaboration at the beginning
of internet
P Linux-based OS—if the OS uses Linux kernel
P used in
P PC, servers, smartphone
» WLAN routers, TVs

Other kernels

P there is not only Linux, e.g.,
P FreeBSD kernel
P NetBSD kernel
P Solaris kernel
» Windows NT kernel

Question

P open a command-line on your Linux, and go to the root
directory:

ls /

P what could be these directories for?

Unix filesystem

I “root

Jbin

ssential user
bash

cat

chmod

shells
timezone

Jsbin

essential system

b= userbin
= rusrrinciude
tandard include

b= rusenin

bin, lib
files for coding

= rustocal

Iusr/locallshare

= usr/share

Iusr/share/man

var
ble data il

Ivarfcache
application

Iarfiib
data modified as

Ivarflock

installed pack

Ivarispool
asks walting to

= /ev
device files

= mome
directorie:

b
libraries &

mnt
mount files for
temporary

ot
‘optional software

Figure 11: Ppgardne [CC BY-SA 4.0]

https://commons.wikimedia.org/wiki/User:Ppgardne
https://creativecommons.org/licenses/by-sa/4.0

Shell kernel metaphor

Figure 12: Potkettle [CC BY 3.0]

https://creativecommons.org/licenses/by/3.0

Shell

P required if human-interaction needed
P command-line interface
P graphical user interface

Security

P authentication

P who is the user?

> e.g., a normal user or administrator
P authorization

P what is the user allowed to do?

P e.g., the right to install programs

Networking

P OS implements networking functions
P> open networking protocols
P e.g., Windows can communicate with Linux OS through the
Internet Protocol
P vendor-specific protocols
P e.g., Server Message Block (SMB) from Microsoft for shared
access to files, printers

Firmware

P> device-specific software for an embedded
device

P does not get updated very often

P eg., your computer's BIOS

P> the software that you flash to your
Arduino board

P> the software for your car’s brake
controller

P cf. OS, which gets updated regularly

Figure 13: Public
Domain

Files

P> computer resource for recording data discretely
P e.g., text, photo, computer program
P on Unix-like systems can be also a device or virtual resource
P eg., /dev/sdb, /dev/null
P paper analogy
P file format
P> based on file extension on Windows
P based on the file signature on Linux

https://en.wikipedia.org/wiki/List_of_file_signatures

File corruption

P> if a file cannot be properly read
P when can it happen?
P an image editing program crashes
while saving the image file
P removing a USB stick before
unmounting
P physical damage
P aging of the disk

Figure 14: Jim Salter [CC
BY-SA 4.0]

https://creativecommons.org/licenses/by-sa/4.0
https://creativecommons.org/licenses/by-sa/4.0

Task

P a unit of work for a computer
P also called: process, thread

P multitasking, multiprocessing, multithreading

Task Queue

Thread pry
Pocl O||O||O[|1<:||O

Completed Tasks
-~ @O «— O <—|

Figure 15: |, Cburnett [CC BY-SA 3.0]

https://creativecommons.org/licenses/by-sa/3.0

	Lecture
	Appendix

