
Algorithms

Gökçe Aydos

https://aydos.de/uni

This work is licensed under CC BY 4.0

https://creativecommons.org/licenses/by/4.0

Lecture

Goals

▶ understand the meaning of algorithm
▶ be able to formulate algorithms for easy problems
▶ be able to specify problems
▶ seeing programming languages as communication tools for

algorithms
▶ understanding the concept of compilers

Theme

▶ algorithm – a frightening word
▶ we use algorithms every day, e.g., for duplicating numbers
▶ cook-book recipe for computers

History

▶ word originates from the name of mathematician Muhammad
ibn Musa al-Khwarizmi (780-850)1

▶ he wrote an arabic book about Hindu-Arabic numbering system
▶ his books were widely used in Europe
▶ Latin translation of the book started with Dixit Algorizmi

1https://en.wikipedia.org/wiki/Algorithm#Etymology

https://en.wikipedia.org/wiki/Algorithm#Etymology

The first computer algorithm

▶ by Ada Lovelace in 1842
▶ she saw the potential of Charles Babbage’s Analytical Engine
▶ published a program for calculating Bernoulli numbers
▶ Analytical Engine was never completed, so Ada’s algorithm was

never implemented

An old algorithm for duplication by Adam Ries

Lehret wie du ein zahl zweyfaltigen solt.

Thu ihm also: Schreib die zahl vor dich
mach ein Linien darunter
heb an zu forderst
Duplir die erste Figur. Kompt ein zahl die du mit einer Figur schreiben magst
so seß die unden. Wo mit zweyen
schreib die erste
Die andere behalt im Sinn. Darnach duplir die ander
und gib darzu
das du behalten hast
und schreib abermals die erste Figur
wo zwo vorhanden
und duplir fort bis zur leßten
die schreibe gantz aus
als folgende Exempel aufweisen

An old algorithm for duplication II

How to teach to duplicate numbers:

Say them: Write the number
draw a line below
start to calculate
Duplicate the first digit. If the result has a single digit
write it below. If two
write only the first digit
Memorize the second one. Afterwards duplicate the second digit
add the number
that you memorized
Again write only the first digit
if you get two digits
and continue duplicating until the last digit
Write the last sum to the leftmost side

An old algorithm for duplication III

41232 98765 68704
----- ------ ------
82464 197530 137408

Definition

▶ algorithm is an abstract sequence of instructions to solve a
problem

▶ a weak example: a recipe for a cake
▶ a good example: instructions to multiply numbers on paper

Algorithms vs programs

algorithms:

▶ general description for a problem solution
▶ not bound to a specific computer or programming language
▶ same algorithm can generally be used in many scenarios

programs:

▶ sequence of specific instructions
▶ are written in a specific programming language
▶ a program solves a specific problem, and not others

Generality of instructions

algorithms are general instructions, and their generality can differ:

basic:

1. swap the two numbers at the beginning of the list
2. if the first number is greater than the second, continue at step

19

complex:

1. sort the list
2. remove the maximum

Sorting - demo

take three cards with numbers on them and demonstrate bubble sort

Sorting - exercise

an example algorithm for sorting three cards:

1. if the left card is greater than the middle card, swap them
2. if the middle card is greater than the right one, swap them
3. if the left card is greater than the middle one, swap them

Write an algorithm for sorting four cards.

Optional: Can your algorithm sort the cards in minimum number of
steps?

Typical components of algorithms

1. instruction sequences, e.g., first this, then that
2. conditionals, e.g., if this then that else these
3. loops, e.g.,

▶ while this is true repeat this
▶ repeat this 100 times

4. jumps (considered harmful in programming), e.g., continue at
this line. (generally no calculation)

An old algorithm for duplication III
How to teach to duplicate numbers:

Say them: Write the number <-jmp
draw a line below <-inst
start to calculate <-inst
Duplicate the first digit. <-loop start
If the result has a single digit <-cond start
write it below. If two <-cond
write only the first digit <-cond
Memorize the second one. <-cond end
Afterwards duplicate the second digit <-inst
add the number <-inst
that you memorized <-inst
Again write only the first digit <-inst
if you get two digits. <- inst (repetition of cond above)
and <- jmp
continue duplicating until the last digit <-loop end

Jumps considered harmful

▶ originating from Dijkstra’s2 work goto considered harmful
▶ jumps lead to spaghetti code in long programs
▶ solution: structured programming w/o jumps
▶ programming languages are for humans (and for computers)
▶ machine code, e.g., assembly, still relies on jumps

2Dutch computer scientist (1930-2002)

Specifications

▶ to solve problems, we need clear problem descriptions
▶ => need for specifications
▶ what are the conditions?
▶ which tools are allowed?
▶ when is a solution correct or acceptable?

Specifications II

▶ creating exact specifications is hard
▶ typically the customers do not know what they exactly want
▶ specifications may change during development
▶ led to motivation for agile development vs waterfall model in

software development

Specifications - example

▶ calculate the sum of first n numbers.
▶ tools at your disposal: addition, comparison

Specifications - problem

Long specifications tend to contain contradictions, e.g.:

page 50: if key 1 is pressed, the text should turn red
page 150: if key 1 is pressed, the text should turn green

Solution: specification languages, formal verification

Programming languages
▶ programming languages turn our idea to an instruction

sequence

▶ specification: you have a natural number. The number must
be duplicated

▶ idea: duplicate the number digitwise from right to left and
consider carry

▶ algorithm: Riese’s algorithm or:

For every digit, beginning from the rightmost, do the following:

1. duplicate the digit
2. if there is a carry from the last iteration, add it
3. write the right digit of the sum below the digit being duplicated
4. memorize the left digit of the sum

If there is a carry left, write it leftmost.

Algorithm - pseudocode

in: digits z_1 to z_n
c <- 0
for i <- n,...,1 do
d <- 2z_i + c
z'_i <- d mod 10
c <- |_ d/10 _|

z'0 <- c
for i <- 0,...,n do
output z'_i

Algorithm - Python

expects a list of digits
def duplicate(digits):

digits_duplicated = list(digits)
carry = 0

for i in reversed(range(len(digits))):
print(digits[i], i)
d = 2*int(digits[i]) + carry
digits_duplicated[i] = str(d % 10)
carry = d//10

return str(carry) + ''.join(digits_duplicated)

Programming languages III

variety:

▶ high-level, e.g., Python, Java, C++
▶ low-level, e.g., C, assembler

Programming languages IV

▶ but the goal of a program does not change: programming
languages are tools for communicating your algorithms to the
computer

▶ programming languages must be learned like a spoken language
by practising

Compilers

▶ compilers are programs which translate programming code to
another code that a CPU can understand

Summary

▶ algorithms are general instructions to solve a problem
▶ a programming language defines an art how to describe

algorithms
▶ program is a text written in a programming language, which

implements an algorithm
▶ specification defines what a program should accomplish
▶ compiler is a program which translates between programming

languages

Summary II

Steps for solving a problem:

1. problem definition
2. what do you want to achieve?: create a specification
3. come up with a solution idea
4. refine it to an algorithm
5. implement it in a (high-level) programming language
6. compile your code to get the CPU instruction sequence

	Lecture

