
Abstract—The large-scale adoption of smartphones during 
recent years has created many opportunities to improve health 
monitoring and care delivery. In this work, we demonstrate that 
motion sensors available in off-the-shelf smartphones can 
capture physiological parameters of a person during stationary 
postures, even while being carried in a bag or a pocket. In 
particular, we develop methods to extract heart and breathing 
rates from accelerometer data and compare them with 
measurements obtained with FDA-cleared sensors. We 
evaluated their accuracy on 12 people across different still body 
postures (pre- and post- exercise) and were able to reach mean 
absolute errors of 1.16 beats per minute (STD: 3) and 
0.26 breaths per minute (STD: 0.5) when considering different 
conditions. Furthermore, we evaluated the same methods 
during regular phone activities, such as when watching a video 
or listening to a conversation, yielding increased but still 
comparable error rates for some conditions.   

I. INTRODUCTION 
Physiological monitoring during daily life offers the 

possibility of capturing information about a person’s health 
and fitness. This information is useful to base medical 
diagnoses in real-life conditions (vs. white-coat influenced 
conditions) and to help track chronic health conditions and 
effects of therapeutic interventions. While great strides have 
been made to provide comfortable physiological monitoring, 
traditional methods still require attaching electrodes to the 
skin and/or interrupt daily activities. Due to such challenges, 
people do not feel compelled to track their vital signs and 
show low adherence with existing physiological monitoring 
approaches. In order to address these problems, more 
comfortable and less disruptive methods are needed.  

In recent work [7][8], we have demonstrated that motion 
sensors embedded in head-mounted and wrist-worn wearable 
devices such as Google Glass and Galaxy Gear can capture 
heart and breathing rates accurately. While the results were 
very promising, not everybody uses these types of wearable 
devices as they may be cumbersome and stigmatizing. 
Motivated by these challenges, this work explores the 
possibility of using motion sensors of currently available 
smartphones while being carried in different locations on the 
body (e.g., trouser pocket, shoulder bag) and when used 
during regular phone activities (e.g., watching a video, 
listening to a conversation), as depicted on Fig. 1. In the 
following, we review relevant research in physiological 
measurement with smartphones. Then, we describe methods 
to capture heart rate (HR) and breathing rate (BR) from 
motion data as well as the experimental design to validate 
them. Finally, we provide a quantitative comparison of our 
methods with FDA-cleared sensors and concluding remarks. 
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II. MEASURING PHYSIOLOGY WITH SMARTPHONES 
Smartphones are now ubiquitous devices and researchers 

have explored different approaches to leverage their sensors 
and capture physiological parameters. A commonly explored 
approach is photoplethysmograpy (PPG). PPG captures the 
blood volume pulse (BVP) using light reflected from, or 
transmitted through, the skin [2]. In order to measure PPG, 
researchers have used the flash and camera of existing 
smartphones to provide physiological measurements such as 
HR and BR [11][16]. This approach requires the user to place 
their finger on the phone in such a way that the flash 
illuminates the finger while the camera captures color 
changes. Researchers have also shown that remote cameras 
and ambient light can also be used to capture the same 
information [15], freeing users from having to put their 
fingers on their phone. However, this method still disrupts 
daily activity as the user needs to position him/her-self in 
front of the smartphone camera in order for measurements to 
be made. An alternate measurement technique for capturing 
cardiovascular parameters is Ballistocardiography (BCG). 
BCG captures subtle motions of the body due to shifts in mass 
of blood as the heart pumps [17]. While original research 
required the person to lie down on a suspended mattress, 
technological developments have enabled measurement 
through other devices that are less disruptive (e.g., weighing 
scale [10], ear-worn device [6]). Researchers have also 
explored using accelerometers to capture HR and BR by 
strapping smartphones or sensors onto the chest [5][12][14], 
where both cardiac and respiratory motions are more 
prominent. In contrast, this work explores measurement from 
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Figure 1. Motion sensors of a smartphones can be used to recover heart and 
breathing rates of the users during stationary positions and activities such as 

listening on the phone. 
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natural and comfortable phone locations (e.g., pocket, bag), 
further from the chest, where physiological motions are more 
subtle and prone to motion artifacts.  

III. METHODS 

A. Apparatus 
In this work we explore using the 3-axis accelerometer of 

a Samsung Galaxy S4 to capture physiological parameters 
from a person carrying their phone. In order to record the 
data, we wrote Android software that captured data at an 
average sampling rate of 100 Hz. We then applied the 
methods proposed below to extract heart and breathing rates. 
We evaluated the accuracy of our methods against FDA-
cleared devices that monitored electrocardiography (ECG) 
and respiration. In particular, we used a single-lead Alive 
Technology sensor to capture ECG at a sampling rate of 
300 Hz, and the Flex Comp Infinity chest band to capture 
respiratory motions at a sampling rate of 256 Hz. In order to 
facilitate the analysis, all signals were synchronized and 
oversampled to 256 Hz before the analysis.  

B. Acclerometer Processing 
Given a stream of 3-axis accelerometer data, we 

developed an automated method for recovering the pulse and 
respiratory waveforms from which heart and breathing rates 
can be extracted, respectively.  The processing steps are as 
follows. 

Pulse Waveform: A moving average window (n: 15) is 
subtracted from each of the axes to detrend readings. Then, 
each of the components is set to have zero mean and unit 
variance so they have the same relevance and the analysis is 
more robust to different device orientations. A band-pass 
Butterworth filter (cut-offs at 7 and 13 Hz, n = 1) is then 
applied to isolate the BCG motions of each component. The 
resulting components are then aggregated with a squared root 
summation of the squared comments. Finally, another band-
pass Butterworth filter (0.66 – 2.50 Hz, n = 1) is applied to 
obtain the final pulse waveform.  

Respiratory Waveform: Similarly to the previous 
processing steps, a moving average window (8.5 seconds) is 
first subtracted from each of the components which are then 
z-scored. In order to remove additional noise, we use 

Independent Component Analysis (Jade implementation [3]). 
To isolate the respiratory motions, the resulting components 
are then band-pass filtered with a Butterworth filter (0.13 Hz 
– 0.66 Hz, n = 1). Finally, we automatically select the most 
periodic component as the final respiratory waveform. 
Periodicity of the signal was estimated by the maximum 
magnitude achieved in the frequency domain within the 
previously used frequency range. 

These algorithms are motivated by our previous 
work [7][8][15], which considered different datasets and 
modalities to extract physiological parameters. The methods 
were adjusted to be able to correct undesired motion artifacts 
(e.g., different window sizes) and capture more subtle 
motions (e.g., lower filter orders).  

C. Heart and Breathing Rate Estimation 
Once the signals are processed, frequency analysis is 

performed to extract heart and breathing rates. For heart rate 
we calculate the Fast Fourier Transform (FFT) of the pulse 
waveform and find the frequency corresponding to the 
maximum peak within the range 0.66 Hz and 2.5 Hz, 
corresponding to 45 and 150 beats per minute, respectively.  
For breathing rate estimation we calculate the FFT of the 
respiratory waveform and find the frequency corresponding 
to the maximum peak within the range 0.13 Hz and 0.66 Hz, 
corresponding to 8 and 45 breaths per minute, respectively. 
For the case of HR estimation from ECG signals, we use the 
Pan and Tompkins method [13] to detect the R peaks, and 
then compute HR as 60/(average distance between peaks). 

D. Experimental Protocol 
In order to validate the physiological measurements from 

the smartphone, we recruited 12 participants (six females) to 
perform a two-part experiment approved by the Institutional 
Review Board of the Massachusetts Institute of Technology. 
For the first part of the experiment, each participant was 
asked to hold three different body postures (standing, sitting 
and lying down) for two separate minutes: before and after 
pedaling on a static bike for a minute. This procedure enabled 
capture of a large range of physiological parameters as well 
as studying the impact of different body postures that have 
been shown to mediate BCG signals [1][7][8]. Throughout 
this part of the experiment, participants were asked to carry a 
phone in their pocket. When in the standing position 
participants were also asked to carry two bags with phones 
inside; one in the left hand and the other hanging from the 
right shoulder. This procedure enabled capture of different 
phone carrying behaviors, which are more common for 
specific demographics (e.g., females) [4][9]. For the second 
part of the experiment, participants were asked to perform 
several traditional phone activities while sitting down. 
Specifically, participants had to watch a video, listen to a 
conversation, and browse the Internet for a minute each. 
During this part of the experiment, participants were 
instructed to hold the phone as they would during their 
regular phone activity. Fig. 2 shows an overview of the 
location of the phone for all the conditions. The duration of 
the study was around 30 minutes and participants were 
compensated with a $5 Amazon gift card.  

 
 

Figure 2. Location of the smartphone during each part of the 
experimental protocol. Participants remained still while standing up, 
sitting down, and lying down, which were repeated before and after 

exercising, followed by watching a video, listening on the phone, and 
browsing the Internet while sitting down.  
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IV. RESULTS 
As in previous work (e.g., [7][8][15]) the collected data 

was divided into segments of 20 seconds with an overlap of 
75% (sliding window with 5 second offsets), yielding a total 
of 1404 segments of data distributed across different 
conditions. We then extracted HR and BR from each of the 
segments separately and compared them to traditional 
laboratory measurements. Tables I and II show a summary of 
the results across locations and activities for HR and BR, 
respectively. Fig. 3 shows representative Bland-Altman plots 
for some of the conditions.  

A. Phone in Pocket During Different Body Postures 
The left-most columns of the tables show the performance 

of our methods when the phone was inside the pocket of the 
participant. These results include estimations across three 
different body postures – sitting, supine, and standing. In 
order to cover a larger range of heart and breathing rates we 
also collected data before and after exercising. As can be 
seen, both HR and BR estimations show low mean absolute 
error rates with some differences across the two 
measurements and body postures. For HR estimation, the 
mean absolute error achieved during the supine position was 
significantly better than during the other two positions 
(T-test, p<0.005). This finding is aligned with previous 
research [17], which required participants to lie down to 
minimize the amount of unexpected motion. On the other 
hand, while the standing position yielded the worst 
performance across body postures, it still provided 
reasonably accurate results. For BR estimation, the mean 
absolute error rate achieved during the sitting position was 
significantly better than the other two positions (p<0.001). 
We believe this is the case due to the proximity of the phone 
to the stomach, which is more directly influenced by 
respiratory motions. Overall, BR estimations were more 
accurate than HR estimations due to their larger amplitude 
and lower frequency range. The motions were more easily 
transferred through the body and sensed by peripheral 
accelerometers in the phone.  

B. Standing: Pocket vs Hand-bag vs Shoulder-bag  
 While the participants were holding the standing position, 
three different phones at separate locations were 
simultaneously monitoring motion data: one inside the 
pocket, another inside a bag in the left hand, and another 
inside a bag hanging from the right shoulder. When 
comparing results across locations, the phone inside the bag 
hanging from the shoulder yielded slightly better mean 
absolute error for BR and significantly better for HR 

estimation (p<0.001). We believe this result is due to a 
combination of several factors. When hanging a bag from the 
shoulder, the accelerometers can capture more accurate 
ballistocardiographic and respiratory motions that are more 
prominent along the vertical axis [17] and around the chest 
location. Moreover, when hanging a bag from the shoulder 
the amount of contact with the body is large and its range of 
movements are more constrained than when holding the bag 
from the hand. Overall, these factors can enable easier 
propagation of the subtle cardiorespiratory motions. During 
the standing position, one of the participants had difficulties 
to remain relatively still which negatively impaired some of 
the results. The data points associated with this participant 
correspond to the purple dots of the middle graphs of Fig. 3. 

 
Figure 3. Bland-Altman plots for heart (left) and breathing rates (right) of 
the conditions that yielded the best mean absolute error when the phone 

was inside the pocket (top), inside the bag (middle), and on the hand 
(bottom). Mean error is depicted with slashed red and 95% limits are 

depicted with slashed green lines. (HR: Heart Rate in beats per minute, 
BR: Breathing Rate in breaths per minute, Accel: Accelerometer).             

N = 216 for top and middle graphs, and N = 108 for bottom graphs. 
 

                                            TABLE I.             HEART RATE ESTIMATION   

 
Pocket Bag Hand  

Sitting Supine Stand Hand Shoulder Watch+ Listen+ Browse+ 

ME 1.97 1.16 3.37 7.90 2.38 2.37 3.71 10.09 

STD 2.93 3.00 6.67 11.56 4.85 4.97 7.40 12.42 

RMSE 3.53 3.21 7.46 13.98 5.39 5.48 8.25 15.96 

CC 0.96 0.95 0.86 0.65 0.92 0.83 0.75 0.44 
 

                       TABLE II.             BREATHING RATE ESTIMATION 

Pocket Bag Hand 
Sitting Supine Stand Hand Shoulder Watch+ Listen+ Browse+ 

0.26 0.92 2.16 2.26 2.05 2.24 0.33 1.47 

0.50 2.46 3.41 3.91 3.40 3.71 0.63 2.58 

0.56 2.62 4.03 4.51 3.96 4.32 0.71 2.95 

0.99 0.83 0.62 0.50 0.63 0.58 0.98 0.78 
 

ME = Mean absolute error (beats/breaths per minute), STD = Standard deviation of the absolute error, RMSE = Root mean squared error,                                                                                                                
CC = Pearson’s correlation coefficient (p < 0.001 for all correlations). N = 216 for each column except for + which N = 108 
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C. Phone Activities 
While the phone may remain most of the time in one of 

the locations already considered [4][9], the main purpose of 
the device is to facilitate performing activities such as 
communicating with other people. In this section, we provide 
preliminary analysis of HR and BR estimation while the 
phone is being used during three, relatively stationary, 
common activities: watching a video, listening to a 
conversation, and browsing the Internet.  

 In terms of HR estimation, both watching and listening 
yielded slightly worse but still comparable results to the ones 
obtained when the phone was inside the pocket. However, the 
mean absolute error was significantly worse when browsing 
information than the other two activities (p<0.001). Among 
all the different conditions, this is the only one in which the 
user is actively manipulating the device and, therefore, is 
affecting the accelerometer readings more directly. Indeed, 
subtle touch interactions such as zoom-in, zoom-out and 
finger taps elicit very similar acceleration patterns to the ones 
associated with ballistocardiographic beats and could 
potentially confuse the algorithms. While more complex 
approaches could be used to detect and cancel the effects of 
these non-cardiorespiratory motions, larger motions such as 
the ones observed during daily activities (e.g., walking) could 
easily preclude the subtle motions associated with the heart 
beats. In terms of BR estimation, listening to a conversation 
with the phone next to the ear yielded significantly better 
results than the other two activities (p<0.001) which was 
comparable to the results obtained when the phone was inside 
the pocket during the sitting down position. Interestingly, the 
performance during the browsing activity was still very 
accurate, indicating that touch interactions were not confused 
with respiratory motions probably due to the lower frequency 
range of the latter. 

V. CONCLUSIONS 
 The previous section demonstrates that physiological 
parameters such as heart and breathing rates can be recovered 
from a smartphone via accelerometer measurements while 
the person is carrying it in different locations or using it 
during different activities. However, most of the considered 
conditions involved positions and activities without too much 
motion (e.g., lying down, watching a video). As shown in the 
browsing condition, for example, motions such as those 
presented when interacting with the phone can negatively 
impair the performance of the proposed methods. Therefore, 
our methods would only be applicable to provide sporadic 
assessments during the day when the amount of motion is 
small (e.g., reading a book, watching TV). Future efforts will 
focus on extending this research and assess the accuracy and 
utility of the proposed methods in real-life scenarios.  

 The results of this work are very encouraging but also 
worrisome. While currently limited to stationary conditions, 
this work demonstrates that personal information such as 
physiological parameters can be captured with existing 
smartphones offering the possibility for intrusion of privacy. 
For instance, an application could be used to covertly monitor 
the physiological responses of individuals to personalize 
advertisements. While this may be a potential application in 
the future, it is important to appropriately inform users about 
how the data is being used. Currently, most smartphone users 

are not aware that cardiovascular health information can be 
conveyed simply by carrying or holding a smartphone that 
contains accelerometers. Findings like the ones presented in 
this work urge us to reconsider how this type of data is 
monitored, stored and transmitted to enforce transparency 
and protect user’s privacy of their health-related data.   

In summary, this work demonstrates that it is possible to 
capture physiological parameters from subtle peripheral 
smartphone motions during stationary positions and 
activities. While the results are very promising there are still 
several research challenges that need to be addressed in order 
to provide continuous physiological measurement. As these 
methods continue to advance, we hope they will be used to 
create passive and comfortable assessments that foster 
greater health and wellbeing during daily life.  
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